

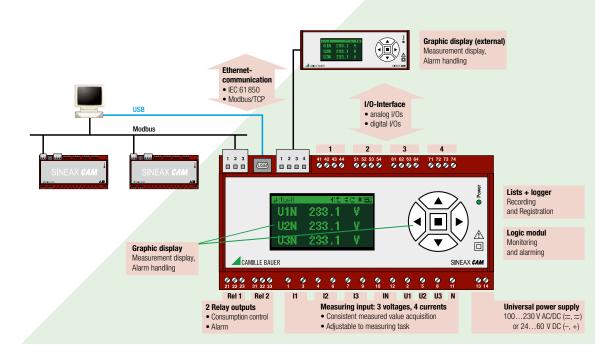
Main features

CE

- Consistent measurement (without interruption)
- Suitable for strongly distorted networks, zero crossing or phase angle controls
- I/O interface adaptable to individual requirements
- Configuration and measured value acquisition via USB and Modbus interface
- Acquisition of minimum and maximum values with time stamp
- Graphic display with free measurement display assembling and alarm handling
- Logger for long-term recording of measurement progressions
- Lists for recording events, alarms and system messages

Application

SINEAX CAM is designed for measurements in electric distribution systems or in industrial facilities. Along with the current system state the pollution due to non-linear loads as well as the overall load of the supply system can be detected. Consistent measurement also guarantees that every network change is reliably acquired and included in measured data. The


Fig. 1. SINEAX CAM in top-hat rail housing.

high-performance measuring system makes the device also suitable for strong distorted systems as well as for zero crossing or phaseangle controls.

The I/O interface may be individually assorted depending on the application. Up to 4 modules with different functionality may be used.

The logger allows long-term recordings of measurement progressions, e.g. to monitor the variable load of transformers, as well as meter readings at definable times. Lists offer the chronological recording of events, alarms or system messages for further analysis of occurrences in the power system.

The graphic display is intended for on-site visualization of measurements, lists and alarms. Via keypad the user can e.g. acknowledge alarms or reset extreme values.

Applicable standards and regulations

Thermal ratings:

(Issue: May 2006) IEC/EN 61 010-1 Safety regulations for electrical measuring, control and laboratory equipment IEC/EN 60 688 Electrical measuring transducers for converting AC electrical variables into analog and digital signals DIN 40 110 AC quantities IEC/EN 60 068-2-1/-2/-3/ -6/-27: Ambient tests -1 Cold, -2 Dry heat, -3 Damp heat, -6 Vibration, -27 Shock IEC/EN 60 529 Protection types by case IEC/EN 61 000-6-2/-6-4: Electromagnetic compatibility (EMC), Generic standard for industrial environments IEC/EN 61 131-2 Programmable controllers - Equipment requirements and tests IEC/EN 61 326 Electrical equipment for measurement, control and laboratory use - EMC requirements IEC/EN 62 053-31 Pulse output devices for electromechanical and electronic meters (two wires only) UL94 Tests for flammability of plastic materials for parts in devices and appliances **Technical data** Measurement input -Rated frequency: 50 ... 60 Hz Measurement TRMS: Up to the 63rd harmonic Measurement category: ≤ 300 V CATIII, ≤ 600 V CATII **Current measurement** Rated current: 1 A (+ 20%), 1 A (+ 100%), 5 A (+ 20%), 5 A (+ 100%) Overrriding max .: 10 A (sinusoidal) Voltage Consumption: $\leq l^2 \times 0.01 \Omega$ per phase Power

Instead of current inputs the version for Rogowski coils provides voltage inputs of nominal 5 V (max. 10 V).

12 A continuous

100 A, 10 x 1 s, interval 100 s

Voltage measurement

2

Thermal ratings:

Rated voltage:	57.7 400 $\rm V_{\tiny LN}$, 100 693 $\rm V_{\tiny LL}$	
Overriding max.	600 $V_{_{\rm LN}}$, 1040 $V_{_{\rm LL}}$ (sinusoidal)	
Consumption:	\leq U ² / 3 M Ω per phase	^{a)} FS: Maximum value of the input configuration (Full Scale)
Input impedance:	$3 M\Omega$ per phase	^{b)} FS: FS-Voltage x FS-Current

Power factor

Camille Bauer Metrawatt AG

System					
Single-phase		1L			
Split Phase		2L			
3-wire system, balanced lo	ad	3Lb			
3-wire system, unbalanced	load	3Lu			
3-wire system, unbalanced	load (Aron)	3Lu.A			
4-wire system, balanced lo	ad	4Lb			
4-wire system, unbalanced	load	4Lu			
4-wire system, unbalanced	load (Open-Y)	4Lu.O			
Basic accuracy under referen	ice conditions acc.	IEC/EN 60 688			
Voltage:	± 0.1% FS ^{a)}				
Current:	± 0.1% FS ^{a)}				
Power:	± 0.2% FS ^{b)}				
Power factor:	± 0.1°				
Frequency:	± 0.01 Hz				
Voltage unbalance:	± 0.2%				
Harmonics:	± 0.5%				
THD Voltage:	± 0.5%				
TDD Current:	± 0.5%				
Energy:	\pm 0.2% FS $^{\textrm{b})}$				
Active energy direct connection:	Kl. 1 / EN 62 053	3-21			
Active energy transformer connection:	KI. 2 / EN 62 053	3-21			
Reactive energy:	KI. 2 / EN 62 053	3-23			

480 V_{IN}, 832 V_{II} continuous

600 V_{IN}, 1040 V_{II}, 10 x 10 s,

800 $\rm V_{_{LN}},\,1386~V_{_{LL}},\,10~x~1~s,$

interval 10 s

interval 10 s

Influence quantities and permissible variations

According to IEC/EN 60 688

Additional error due to system configuration

Neutral N not connected (3Lu, 3Lu.A):

 Voltage
 0.1% of Reading

 Power
 0.1% of Reading

 Energy
 Voltage influence x 2,

Angle error x 2

0.1°

.

11.15

Basic measurement	quantities
--------------------------	------------

present

4Lb 4Lu 4Lu.0

1 1 1

1

1 1 1

Interrupted input signal:	
Voltage	0.2% FS
Current	0.2% FS
Power	0.5% FS
Energy	Basic accuracy x 3
Power factor	0.1°
Measurement with fixed fre	quency:
General	± basic acc. x (F _{konfia} -F _{ist}) [Hz] x10
Voltage unbalance	± 1.5% till ± 0.5 Hz
Harmonics	± 1.5% till ± 0.5 Hz
THD, TDD	± 2.0% till ± 0.5 Hz
Zero suppression, Range lim	itations
PF	
PF QF, LF	1, if Sx < 0.2% range-S 0, if Sx < 0.2% range-S
Current	0, if lx < 0.1% range-l
unb. U	0, if ØU < 5.0% range-U
H-U, THD-U	0, if H1 < 5.0% range-U
H, THD, TDD, unb. U	0, if ΔF longer than 1s > 5 Hz/s
F	45 65 Hz or 10 70 Hz
rango-I I for voltago input or	onfiguration line to line secondary
max.:	Singulation line to line secondary
	nge <u>range-U</u> = 76.2 V _{IN} , 132 V _{II}
	nge <u>range-U</u> = $152.4 V_{IN}$, 264 V _{II}
	nge <u>range-U</u> = $304.8 V_{LN}$, 528 V _{LL}
	nge <u>range-U</u> = 600.0 V _{LN} , 1040 V _{LL}
range-I for current input co	
•	nge <u>range-l</u> = 1.2 A
	nge range-I = 2.0 A
	nge <u>range-l</u> = 6.0 A
	nge <u>range-l</u> = 10.0 A
range-S Ra	nge <u>range-S</u> = range-U x range-I
Relationship between PF, C	F and LF
	Output
ind. cap.	ind. cap.
PF /	
-180 -90	
	/ \ \
outgoing	incoming outgoing
Fig. 2. Active power factor PE.	

Fig. 2. Active power factor PF -----, reactive power factor QF ----power factor LF ----.

Measurement calculation acc. DIN 40 110 incl. 4-quadrant measurement.

	Measured quantity		presen	тах	min	7	2L	3Lb	3Lu	3Lu.A	4Lb
	Voltage	U	•	•	•	1	1				1
	Voltage	U1N	•	•	•		1				
	Voltage	U2N	•	•	•		1				
	Voltage	U3N	•	•	•						
x10	Voltage	U12	•	•	•			1	1	✓	
1,410	Voltage	U23	•	•	•			1	1	✓	
	Voltage	U31	•	•	•			1	1	1	
	Voltage	UNE	•	•							
	Current		•	•		1		1			1
	Current	11	•	•			1		1	✓	
-S	Current	12	•	•			1		1	✓	
-S	Current	I3	•	•					1	1	
-	I-Bimetal 1-60 min	IB	•	•		1		1			1
⊧-U	I1-Bimetal 1-60 min	IB1	•	•			1		1	1	
⊧-U	I2-Bimetal 1-60 min	IB2	•	•			1		1	1	
z/s	I3-Bimetal 1-60 min	IB3	•	•					1	1	
2/0	Neutral current	IN	•	•			1				
	Active power Σ	Р	•	•		1	1	1	1	1	1
ary	Active power	P1	•	•			1				
20.17	Active power	P2	•	•			1				
32 V	Active power	P3	•	•							
4 V _{LL}	Reactive power Σ	Q	•	•		1	1	1	1	1	1
8 V _{LL}	Reactive power	Q1	•	•			1				
40 V _{LL}	Reactive power	Q2	•	•			1				
	Reactive power	Q3	•	•							
	Apparent power Σ	S	•	•		1	1	1	1	1	1
	Apparent power	S1	•	•		-	1	-		-	
	Apparent power	S2	•	•			1				
	Apparent power	S3	•	•			-				
ige-l	Frequency	F	•	•	•	1	1	1	1	1	1
ige i	Active power factor	ΣPF	•			1	1	1	1	1	1
	Active power factor		•				1				
	Active power factor		•				1				
	Active power factor		•								
•	PF Σ Incoming ind.				•	1	1	1	1	1	1
	PF Σ Incoming cap.				•	1	1	1	1	1	1
	PF Σ Outgoing ind.				•	1	1	1	1	1	1
	PF Σ Outgoing cap.				•	1	1	1	1	1	1
	React. power factor	ΣQF	•			1	1	1	1	1	1
σφ	React. power factor		•			-	1		-	-	
	React. power factor		•				1				
	React. power factor		•								
	LF power factor Σ	LF	•			1	1	1	1	1	1
-	LF power factor	LF1	•			-	1	-		-	
-	LF power factor	LF2	•				1		-		
	LF power factor	LF3	•								
,	(U1N+U2N) / 2	Um	•				1				
	(U1N+U2N+U3N) / 3		•		-						
	(U12+U23+U31) / 3		•						1	1	
	(11+12) / 2	Im	•				1		-		
	(11,12,12)/2	Im	-	-			•		1	1	-

Camille Bauer Metrawatt AG

(|1+|2+|3)/3

lm 🔸

1 1 1

1

11

11

System analysis quantities

Measured q	juantity	present	max	1L	2L	ЗLb	3Lu	3Lu.A	4Lb	4Lu	4Lu.0
Voltage unbalan	ce unb. U	•	•							1	1
THD Voltage	THD.U1N	•	•	1	1				1	1	1
THD Voltage	THD.U2N	•	•		1					1	1
THD Voltage	THD.U3N	•	•							1	1
THD Voltage	THD.U12	•	•			1	1	1			
THD Voltage	THD.U23	•	•			1	1	1			
THD Voltage	THD.U31	•	•			1	1	1			
TDD Current	TDD.I1	•	•	1	1	1	1	1	1	1	1
TDD Current	TDD.I2	•	•		1		1	1		1	1
TDD Current	TDD.I3	•	•				1	1		1	1
Harmonics	H2-50.U1	•	•	1	1				1	1	1
Harmonics	H2-50.U2	•	•		1					1	1
Harmonics	H2-50.U3	•	•							1	1
Harmonics	H2-50.U12	•	•			1	1	1			
Harmonics	H2-50.U23	•	•			1	1	1			
Harmonics	H2-50.U31	•	•			1	1	1			
Harmonics	H2-50.I1	•	•	1	1	1	1	1	1	1	1
Harmonics	H2-50.I2	•	•		1		1	1		1	1
Harmonics	H2-50.I3	•	•				1	1		1	1

THD U (Total Harmonic Distortion): Harmonic content related to the fundamental of the RMS value of voltage.

TDD I (Total Demand Distortion): Harmonic content related to the fundamental of the RMS value of the rated current.

Energy meters (high and low tariff)

Active energy:	Incoming
Active energy:	Outgoing
Reactive energy:	Incoming
Reactive energy:	Outgoing
Reactive energy:	Inductive
Reactive energy:	Capacitive

I/O-Interface

Relay	
Number:	2
Contacts:	Changeover contact
Load capacity:	250 V AC, 2 A, 500 VA 30 V DC, 2 A, 60 W

I/O-Module (optional)

Up to 4 different groups of terminals (41-44, 51-54, 61-64, 71-74) with defined input/output functions are available depending on the selected options. These groups are galvanically isolated from each other and from the rest of the device.

The following modules are available:

Analog outputs

2 active current outputs per	group of terminals
Function	On-site display, PLC

Linearizatio	n٠
Linearizatio	n:

Range:

Accuracy: Burden: Burden influence: Residual ripple: Galvanical isolation: Linear, quadratic, kinked 0/4-20 mA (24 mA max.), unipolar or ± 20 mA (24 mA max.), bipolar

± 0.1% of 20 mA

≤ 500 Ω (max. 10 V / 20 mA)

≤ 0.1%

≤ 0,2%

From all other connections (connected within group of terminals)

Analog inputs

2 current inputs per group of terminals

Function:	External measured variable (e.g. temperature), Summing for meters, Scalable as required, Pollable via interface
Range:	0/4 - 20 mA (24 mA max.) unipolar
Accuracy:	± 0.1% of 20 mA
Input resistance:	< 40 Ω
Galvanical isolation:	From all other connections (con- nected within group of terminals)

Digital inputs/outputs

3 per group of terminals, in relation to software configurable as passive inputs or outputs (all the same), acc. EN 61 131-2

Inputs (acc. EN 61 131-2 DC 24 V Type 3):

Function	State acquisition, Trigger / enabling signal, Pulse input for meter
Rated voltage	12 / 24 V DC (30 V max.)
Input current	< 7.0 mA
Counting frequency (S0)	≤ 50 Hz
Logical ZERO	- 3 till + 5 V
Logical ONE	8 till 30 V
Switching limit	Approx. 6.5 V / 2.6 mA

Outputs (partly acc. EN 61 131-2):

Function Rated voltage Rated current Switching frequency (S0)

Leakage current Voltage drop Load capacity Fuse

Alarm, State message, Pulse output 12 / 24 V DC (30 V max.) 50 mA (60 mA max.) ≤ 20 Hz 0.01 mA < 3 V 400 Ω ... 1 ΜΩ Self-regulating

State acquisition, Trigger / enabling

signal, Pulse input for meter

Digital inputs 125 V DC 3 per group of terminals

Function

Rated voltage 48 / 125 V DC (157 V max.) < 2.5 mA Input current Counting frequency (S0) ≤ 50 Hz

Logical ZERO	– 6 till + 20 V						
Logical ONE	30 till 157 V	Meas. time t ₁	Proces	ssing	time t ₂		t –
Switching limit	Approx. 25 V / 0.8 mA		-				-
Interface		Input quantities	4				
Modbus connection (plug-in	ı screw terminals 1, 2, 3)		Analo	a outr	out		
Function:	Configuration, measurement acqui- sition		Modb				
Protocol:	Modbus RTU			, -		1	-
Physics:	RS-485, max. distance 1200 m (4000 ft)		Limit monite	oring	Logic module	Digital output	
Baudrate:	Configurable (1.2 till 115.2 kBaud)					Relay	
Number of bus stations:	≤ 32	Measurement time t	1				
USB connection (USB Mini-B	3, 5 contacts)	Basic measurement	t quantiti	ies			
Function:	Configuration, measurement acqui- sition	Measurement interv	al:			ole, 1 99 ne RMS val	99 periods lue)
Protocol:	USB 2.0	Measurement time t	t,:	2 x r	neasurer	ment interva	al
Subbus connection (plug-in	screw terminals 1, 2, 3, 4)			+ 17	' ms		
Function:	reserved for future device options	System analysis qua	antities				
Ethernet (RJ-45), optional		Measurement interv	al:	18 p	eriods		
Function:	Configuration, measurement acqui- sition	Measurement time t	t ₁ :	2 x r	measurer	ment interva	al
Protocol:	Modbus/TCP or IEC 61850 (depen-	Analog input					
	ding on the version ordered)	Measurement time t	t ₁ :	25 n	ns 30	s (program	mable)
Power supply		Digital input					
Option 1	100 000 \/ . 15%	Measurement time t	t :	< 25	ms		
AC, 50 – 400 Hz: DC:	100 230 V ± 15% 100 230 V ± 15%		1				
Consumption:	≤ 10 W resp. ≤ 20 VA	Total response time	t ₁ + t ₂				
Inrush current:	< 25 A / 0.3 ms	Analog output:			10 ms Jrammab		
System voltage drop with optional I/Os:	< 200 ms (230 V AC)	Modbus / USB:		t,			
with optional / 00.	< 40 ms (115 V AC)	Digital output:		t, +	8 ms + lo	ogic module	Э
System voltage drop		Relay:		t. +	30 ms +	logic modu	le
without optional I/Os:	< 400 ms (230 V AC) < 80 ms (115 V AC)	(Logic module: Swit	t ₁ + 30 ms + logic module ch-in/dropout delay 0 … 65 s,				
Option 2		programmable)					
DC:	24 60 V ± 15%	Example: Relay has	to togal	e if P >	> P rat	ed frequen	cy is 50 Hz.
Consumption:	≤ 10 W	averaging	g time is 1 period, switch-in delay logic		logic set to		
Limit module (Software for	unction)	0 s					
64 limit values for monitorin	0	Response		0		07	
Limit for ON state:	Programmable	40 ms + 1	17 ms +	0 ms	+ 30 ms	= 87 ms	
Limit for OFF state:	Programmable						
Logic module (Software f	'						
	ine logical states: Limit values, digital ault values. Output to digital outputs, ns possible.						

Response time

The total response time is the addition of the measurement time $\mathbf{t_1}$ of the input quantities and the processing time $\mathbf{t_2}$ for the respective output (analog output, bus, digital output, relay).

Internal clock (RTC)

Internal Cluck (n10)			neiay.	200 V AO
Function:	Time reference, counter for operating hours		I/O's:	30 V DC (Low-Level) 264 V AC(HV-Input)
Accuracy:	± 2 minutes / month (15 till 30°C), trimmable via PC-Software	Test voltages:	4920 V DC	, acc. IEC/EN 61 010-1 2, power supply versus inputs U
Synchronization via:	Measurement input, HV-Input 110/230 V AC, synchroni- zation pulse (digital input)		4920 V DC 3130 V DC	3, I/O's, Relay 2, inputs U versus relay, HV-Input 2, inputs U versus inputs I, Bus,
Running reserve:	> 10 years		USB, Low 4920 V DC	, inputs I versus Bus, USB, I/O's,
Vibration withstand (tested	according to DIN EN 60 068-2-6)		Relay	
Acceleration:	± 5 g			c, inputs I versus inputs I
Frequency range:	1015010 Hz, rate of frequency sweep: 1 Oktave/Minute), relay versus relay), relay versus Bus, USB, I/O's

Freque sweep: 1 Oktave/Minute Number of cycles: 10 in each of the three axes Result: No faults occurred, no loss of accuracy and no problems with the snap

fastener

Ambient conditions, general information

Operating temperature:	– 10 till <u>15 till 30</u> till + 55 °C
Storage temperature:	– 25 till + 70 °C
Variations due to ambient temperature:	0.5 x basic accuracy per 10 K
Long term drift:	0.2 x basic accuracy per year
Others:	Usage group II according IEC/EN 60 688
Relative humidity:	< 95% no condensation
Altitude:	≤ 2000 m max.
Indoor use statement!	

Mechanical attributes

Dimensions:	186 x 90 x 62 mm
Mounting:	On top-hat rail acc. DIN EN 50 022 (35 x 15 mm and 35 x 7.5 mm)
Orientation:	Any
Housing material:	Polycarbonat (Makrolon)
Flammability class:	V-0 acc. UL94, self-extinguishing non-dripping, free of halogen
Weight:	500 g

Security

The current inputs are galvanically isolated from each other.				
Protection class: II (protective insulation, volta via protective impedance)		, U I		
Pollution degree: 2				
Protection:	IP40, housing (test wire, IEC/EN 60 529) IP20, Terminals (test finger, IEC/EN 60 529)			
Measurement category:	CAT III (at \leq 300 V versus earth) CAT II (at > 300 V versus earth)			
Rated voltage (versus earth):	Power supply:	265 V AC		

Graphic display (optional)
4250 V DC, relay versus Bus, USB
4920 V DC, relay versus relay

Relay

The graphic display is intended for on-site visualization of measurements, lists and alarms. Via keypad the user can e.g. acknowledge alarms or reset extreme values.

250 V AC

The parametrization of the graphic display and the assembling of user specific measurement displays is performed using the CB-Manager software. Parameters like contrast or the selection of the display language (English, German, French, Czech, Spanish, Dutch, Italian) can be set also directly using the keypad.

The operation of the graphic display is described in a separate document, which is attached in English and German to all devices equipped with display. The appropriate manuals for all languages may be found on the provided software CD.

Rogowski current inputs (optional)

See appendix A

Logger and lists (optional)

By means of these options measurement and event data may be long-term recorded. Depending on the application 9 different kinds of data may be acquisited:

- Progression of mean-values with interval time t1 (1s...60 min)
- Progression of mean-values with interval time t2 (1s...60 min)
- Min/Max values during interval t3 (1s ... 3h)
- Meter readings
- List entries of alarms
- List entries of events
- List entries of system messages

They share the available storage space of 64Mb size. The memory allocation may be performed using the CB-Manager software. Due to the high degree of freedom for the configuration of logger and lists no general information about the maximal storage duration can be given. But these can be seen in the software when selecting the memory allocation, the measurands to store and the number of list entries.

The reading and analyzing of logger and list data can be done using the CB-Analyzer software.

Ethernet with Modbus/TCP protocol (optional)

Ethernet provides a transmission medium with high bandwidth for analyzing measured data in real-time. CAM supports the protocols Modbus/TCP and NTP. Modbus/TCP is a common used standard which is supported by a large number of visualization software tools and thus allows a fast implementation of the device. Via the Modbus/TCP interface all functions are supported, which are possible using the Modbus/RTU or USB interface.

For the *time synchronization* of devices via Ethernet, *NTP* (Network Time Protocol) is the standard. Respective time servers are used in computer networks and are at free disposal via Internet as well. By means of NTP all devices can be used with a common time base.

Applications

- Test stands for aggregates: Recording of the dynamic behaviour of motors and generators.
- Remote monitoring and acquisition of power distribution systems via Intranet / Internet.
- Recording of the dynamic loading of energy supply systems.

IEC 61850 support (optional)

The communication standard IEC 61850 ("Communication networks and systems in substations") is the new standard for substation automation. The CAM with IEC 61850 support is a measuring device which bases on the application of conventional current and voltage transformers. Therefore it is most suitable for the *modemization of substations*, not touching the already installed conventional transformers. It provides the following logical nodes:

MMXU / MMXN: Instantaneous values of voltages, currents, frequency, power quantities and load factors as well as their maximum and minimum values.

MHAI / MHAN: Individual harmonics for voltage and current, THD (total harmonic distortion) and TDD (total demand distortion) and their maximum values.

MMTR: Active and reactive energy meters for incoming and outgoing power. One instance for both high and low tariff.

MSTA: Mean values of voltage, current, active, reactive and apparent power as well as their maximum and minimum values on instantaneous values base. All measured within the same interval. These values are provided for each phase as well.

MSQI: Imbalance of voltage and current, calculated in accordance with two different methods.

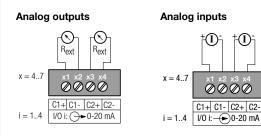
GGIO: Maps the information of assembled analog and digital input modules. So CAM may be used as an IEC 61850 gateway. By means of GGIO instances state information (e.g. ON/OFF or a self-monitoring signal), analog measurements (e.g. a temperature) or metering pulses (kWh / kVArh) of non IEC 61850 capable external devices can be handled. These measurement data then can be accessed via the IEC 61850 interface.

CB-Manager Software

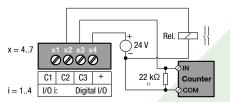
The PC software CB-Manager which is supplied with each device may be used for the parametrization of the SINEAX CAM. Via USB, RS485 or Ethernet interface all measured data can be read and recorded as well.

The access to the device can be restricted by activating a password protection system. For up to 3 users you may selectively grant the right for configuration, reset or simulation functions.

- Complete parametrization of the device (ONLINE, OFFLINE)
- Read and record all measured data
- Archiving of configuration and measurement data
- Setting and resetting meter contents
- Selective resetting of minimum and maximum values
- Setting of interface parameters
- Trimming of analog inputs
- Simulation of I/O-module functionality
- Comprehensive help function


Ordering information

CAM, programmable, Modbus interface, USB		
Features, Selection		
1.	Basic device CAM, for top-hat rail mounting	
	Without display	1
	With graphic display	2
	Without display, with Rogowski current inputs (3V power supply)	3
	With graphic display and Rogowski current inputs (3V power supply)	4
	Without display, with Rogowski current inputs (4.5V power supply)	5
	With graphic display and Rogowski current inputs (4.5V power supply)	6
	Without display, with Rogowski current inputs (6V power supply)	7
	With graphic display and Rogowski current inputs (6V power supply)	8
	Without display, with Rogowski current inputs (9V power supply)	9
	With graphic display and Rogowski current inputs (9V power supply)	А
2.	Input frequency range	
	45 <u>50/60</u> 65 Hz	1
	10 <u>50/60</u> 70 Hz	2
	10 <u>50/60</u> 140 Hz	3

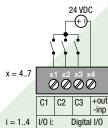

3.	Power supply	
	Nominal range 100 230 V AC/DC	1
	Nominal range 24 60 V DC	2
4.	I/O module 1 (terminals 41-44)	
	Not used	0
	2 analog outputs, unipolar (0/420 mA)	1
	2 analog inputs (0/420 mA)	2
	3 digital outputs or 3 digital inputs 24 V DC	3
	2 analog outputs, bipolar \pm 20 mA	5
5.	I/O module 2 (terminals 51-54)	
0.	Not used	0
	2 analog outputs, unipolar (0/420 mA)	1
	2 analog inputs (0/420 mA)	2
	3 digital outputs or 3 digital inputs 24 V DC	3
	2 analog outputs, bipolar ± 20 mA	5
6.	I/O module 3 (terminals 61-64)	
	Not used	0
	2 analog outputs, unipolar (0/420 mA)	1
	2 analog inputs (0/420 mA)	2
	3 digital outputs or 3 digital inputs 24 V DC	3
	2 analog outputs, bipolar ± 20 mA	5
7.	I/O module 4 (terminals 71-74)	
	Not used	0
	2 analog outputs, unipolar (0/420 mA)	1
	2 analog inputs (0/420 mA)	2
	3 digital outputs or 3 digital inputs 24 V DC	3
	2 analog outputs, bipolar ± 20 mA	5
	3 digital inputs 125 V DC	6
8.	Test certificate Without	0
	Test certificate in German	D
	Test certificate in English	E
9.	Option data logger	
•••	Without data logger	0
	With data logger	1
10.	Option lists	
	Without alarm, event, operator list	0
	With alarm, event, operator list	1
11.	Bus connection	
	Without	0
	Ethernet, Modbus/TCP-Protocol	1
	Ethernet, IEC 61850-Protocol	2

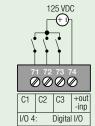
Electrical connections

Screw connections are used. They are designed for cross sections of 4 mm² for single wire leads and 2 x 2.5 mm² for multiwire leads.

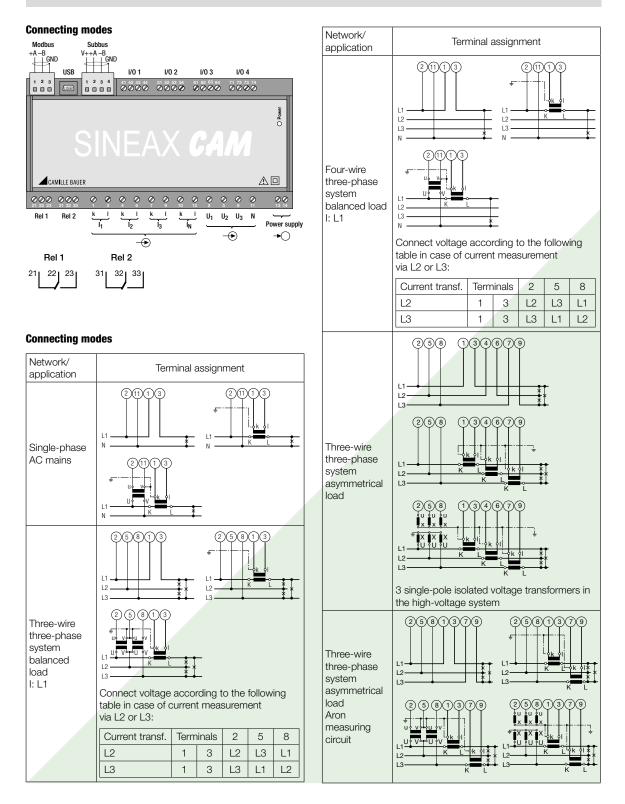
Digital outputs

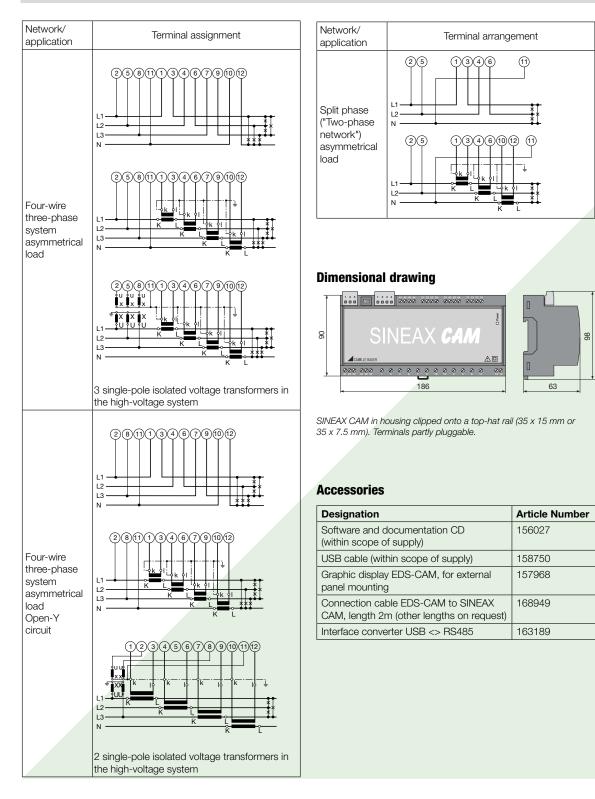
¹⁾ Recommended if input resistance < 100 k Ω


Digital inputs 12/24 V DC

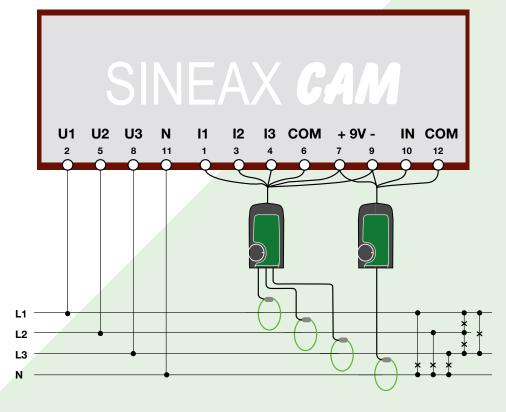

Digital inputs 125 V DC

(T)


0000


T

Appendix A


Version with Rogowski current inputs

This version provides instead of current inputs voltage inputs for connecting the integrator circuit of flexible Rogowski coils. Rogowski coils can be fitted quickly and easily without opening the current circuit and can cover a wide current range using switchable ranges. They can transform fast-changing currents and harmonics much better than conventional current transformers. Thus this version is suited for applications where an accurate analysis of harmonics respectively the corresponding system feedback is required, for monitoring fast changing current flows and for test facilities, where the device under test must be replaced often and quickly.

To allow an application in industrial environment, the power supply of the integrator of the Rogowski coils can be performed directly via the CAM. Because not all coils use the same power supply, different hardware version (3V, 4.5V, 6V und 9V) are offered. The inputs for connecting the Rogowski coils are designed for 5V and measure up to a maximum of 10V without restriction. Rogowski coils normally can be used for multiple current ranges, where for a present nominal current input always the same voltage output, normally 3V, results. The switchover of the current measurement range is performed via the rotary-switch on the integrator. The configuration of the CAM for the same current range has to be done separately by means of the CB-Manager software.

Available Rogowski current sensors

Description	Article no.
Single-phase ACP FLEX 3000_5, 2m, Ø194 mm, Measurement ranges 30/300/3000 A, supply 9 V via CAM	169426
Three-phase ACP FLEX 3003_5, 2m, Ø194 mm, Measurement ranges 30/300/3000 A, supply 9 V via CAM	169434

Rely on us.

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Switzerland Phone: +41 56 618 21 11 Fax: +41 56 618 21 21 info@cbmag.com www.camillebauer.com

Subject to change without notice • Edition 11.15 • Data sheet CAM Le