

SINEAX 211 Passive DC Signal Isolator

without power supply

(Ex) II (1) G resp. II (2) G

Application

The DC signal isolator SINEAX 2I1 (Fig. 1) serve to isolate loadindependent DC current signals. It suppressed noise voltages and currents in a signal loop circuit.

Features / Benefits

- Electrically insulated between input and output / Prevents the transfer of interference voltages and currents, overcomes signal connection
- Input signal: Output signal = 1:1
- No power supply required / No additional wiring and no power supply
- Immune to transient voltages
- Single-channel
- Available in type of protection "Intrinsic safety" [EEx ib] IIC (see "Table 2: Data on explosion protection")

Fig. 1. SINEAX 2I1 in housing N for rail or wall mounting.

Layout and mode of operation

The DC signal isolator comprises a DC chopper Z, an isolating stage T, a rectifier G and a multivibrator M (see Fig. 2). The DC chopper converts the load independent DC signal into an AC signal. This signal is passed through a ferrite-core transformer serving as an isolating stage. On the secondary side, it is rectified, smoothed and converted into a load-independent DC signal.

The chopper unit is controlled by a specially designed multivibrator which obtains its power from the input signal.

Fig. 2. Schematic diagram.

Technical data

General

MTBF: Approx. 120 000 h per isolator

Input signal E -

Input current (I_): Load-independent DC current

0 to 5 mA to 0 to 20 mA,

4 to 20 mA

(all ranges are possible with the same

Max. input voltage: U_E ≤ 15 V (see "Application example,

Fig. 10, page 4)

Permissible input ripple:

≤ 10%

Voltage loss U, across signal isolator:

- non-intrinsically safe version

approx. 3 V

 intrinsically safe version approx. 6 V

≤ 50 mA continuous Overload capacity:

SINEAX 211 Passive DC Signal Isolator

Output signal A 🕞

Output signal (I,): Load-independent DC current

Transformation ratio: 1:1

Residual ripple in

output current: $\leq 0.5\% (7 \text{ kHz})$ Approx. 100 ms Time constant: $U_{\Delta} = U_{F} - U_{V}$ (Fig. 2) Output load voltage:

Accuracy data

20 mA Reference value:

Deviation from specified characteristic under

reference conditions: Max. $\pm 0.1\%$

Reference conditions:

Ambient temperature 23 °C ± 1 K 0 to 20 mA Input current I₌ 250Ω External load R

Additional error:

Dependence on

output load <+ 0.1% / 100 Ω if $R_{\rm ext}<$ 250 Ω

< – 0.1% / 100 Ω if $R_{\text{ext}}^{\text{\tiny call}}>$ 250 Ω

Temperature influence < 0.1% / 10 K

for $+ 10 \le t \le + 40$ °C

< 0.2% / 10 K

for $-25 \le t \le +10$ °C and for $+40 \le t \le +55$ °C

Installation data

Mounting versions:

Mechanical design: Housing type N in plastic for rail

or wall mounting. (Dimensions see Section "Dimensional drawings")

For snap mounting on G-type rail or

cap-type rail (see Section "Dimensi-

onal drawings")

Mounting position: Any

Electrical connections: Screw terminals with indirect wire

pressure, suitable for

max. 2 ×1.5 mm² or 1×2.5 mm²

Weight: Approx. 100 g

Regulations

Electromagnetic

compatibility: The standards DIN EN 50 081-2 and

DIN EN 50 082-2 are observed

Intrinsically safe: Acc. to EN 50 020: 1994

Max. surge voltage: 5 kV, 1.2/50 µs surge withstand test

IEC 255.4 and Surge withstand test, as per IEEE-Std. 472-1975. Common-mode and differentialmode between any two terminals

Electrical design: Acc. to EN 61 010

Protection: Housing IP 40 acc. to EN 60 529

Terminals IP 20

Test voltage: 4 kV, 50 Hz, 1 min.

Environmental conditions

Operating temperature: - 25 to + 55 °C

for standard version - 20 to + 40 °C for Ex versions

Storage temperature: - 40 to + 70 °C

Relative humidity

≤ 75% standard climatic rating of annual mean:

≤ 90% improved climatic rating

Altitude: 2000 m max.

Indoor use only!

Table 1: Type overview

Description	Туре	Article Number
Standard version	84-2 1-10	154 253
Improved climatic rating	84-2 1-10	154 261
Intrinsically safe input	84-2 1-11	154 279
Intrinsically safe output	84-2 1-12	154 287

SINEAX 211 Passive DC Signal Isolator

Table 2: Data on explosion protection $\langle Ex \rangle$ II (2) G resp. II (1) G

Туре	Article Number	Type of protection	Electrical data ac	cc. to Certificates Output	Type examination certificate	Mounting location
84-211-11	154 279	[EEx ib] IIC	L _i = 0 C _i = 0 for connection to certified intrinsically safe circuit with following maximum values: U _i = 30 V I _i = 100 mA	U _m = 253 V AC resp. 125 V DC	Outside	Outside
84-211-12	154 287	[EEx ia] IIC	U _m = 253 V AC resp. 125 V DC	U _o = 12,6 V I _o = 100 mA P _o = 315 mW linear characteristic IIC	PTB 98 ATEX 2176	the hazardous area

Electrical connections

SINEAX 211

Passive DC Signal Isolator

Dimensional drawings

Fig. 6. SINEAX 211 for wall mounting.

Fig. 7. SINEAX 211 for mounting on G-type rail, EN 50 035 – G32.

Fig. 8. SINEAX 2I1 for mounting on cap-type rail, EN 50 022-35 × 7.5.

Fig. 9. SINEAX 2I1 for mounting on cap-type rail, EN 50 045-15 × 5.5.

Application example

The output signal generated by the KINAX 3W2 is needed both for local and remote measurement.

Problem:

Is the burden R2 connected across the output signal of the isolating transformer type 84-2I1-10 sufficient for local measurement? If not, then use, for example, SINEAX TV 808.

$$U_A = U_S - U_M - U_V - (R1 \cdot 20 \text{ mA}) = 8 \text{ V}$$

$$Burden R2 [\Omega] = \frac{UA [V]}{0.02 [A]} = 400 \Omega$$

Fig. 10. Typical circuit with an isolating transformer SINEAX 84-211-10, transmitter KINAX 3W2 for angular measurement and a power supply unit SINEAX B 811.

Rely on us.

Camille Bauer AG Aargauerstrasse 7 CH-5610 Wohlen / Switzerland

Phone: +41 56 618 21 11
Fax: +41 56 618 35 35
e-Mail: info@camillebauer.com

www.camillebauer.com