

MP85A/ MP85ADP FASTpress

Special features

- 100% quality control of the production process
- Powerful algorithms for monitoring fitting, testing and press-fitting processes
- Universal twin-channel amplifier for many commercially available sensors with TEDS sensor detection
- Memory function for results, curves and device settings
- Convenient integration into the automation system by means of standardized fieldbus interfaces

Description

Integrated quality assurance in production and laboratory

With the MP85A(DP), quality assurance can be integrated into the production process. Functional safety, economic efficiency and product liability are of paramount importance. Permanent monitoring is indispensable, especially where quality assurance is only possible during the actual manufacturing process. Typical examples include:

- Press-fitting
- Fitting
- · Riveting and clinching
- Flanging and roller-burnishing

MP85A(DP) includes all the functions necessary for 100% checking, together with user-friendly, flexible software that allows the user to configure variable test sequences without in-depth programming knowledge.

Performance features and advantages:

- Easy configuration and commissioning with the free parameterization and visualization software PME Assistant.
 Download from www.hbm.com -> Support -> Software
- Precise standard-compliant process analysis to meet requirements
- Flexible system for monitoring different workpieces, 1000 different device settings and 1000 different workpieces/processes can be stored
- Storage of results, curves and statistics, as well as the device settings in the device itself on a memory card or external PC
- Continuous traceability thanks to integrated process control and the statistics functions of the stored processes
- Integration via digital inputs/outputs or integrated fieldbus interfaces to primary control systems, such as a PLC control or process control systems
- · Flexible application, tailored for use at manual workstations
- · Expansion of existing machines and retrofitting of test systems possible

Possible fitting situations

Twin-channel fitting monitoring

Solutions for mounting processes

The MP85A(DP) monitors 2 measured quantities, such as force and displacement or time. Production and machine status can be monitored using the mounting characteristic curve by means of freely adjustable evaluation criteria. This allows the operator to control the quality and the output of production.

Monitoring is either by tolerance band, envelope curve or by max. 9 freely definable tolerance windows. The system monitors:

- Thread-in force
- Block force
- · End position
- Limit values
- Complete force/displacement curve
- Partial process curves

OK / NOK testing controls production and helps to minimize downtime. Warning limits monitor the production process, making machine protection possible, control signals control Start/Stop. Limit value cutoff implemented either via digital inputs, Ethernet or PROFIBUS-DPV1 interface (optional).

All the individual and cumulative results, process curves and minimum/maximum values of both channels are stored.

MP85A(DP) FASTpress function blocks

Immediate utilization of evaluation criteria

- · Sensor data does not need to be set manually when using sensors with TEDS technology
- The TEDS data is read via the sense leads from the sensor (instead of an additional cable). The cable and the connector can be deployed as usual.
- · The MP85A(DP) is ready for use within seconds

Process analysis with tolerance windows / measurement and visualization

The following windows are used to evaluate the production process:

1 alarm window Limits at which an alarm is triggered. This window is used to protect the machine.

Defines the range in which measured values are stored, within which all the other

tolerance windows are positioned.

1...9 tolerance windows For analyzing the fitting process. In the case of tolerance windows, there is a free

choice of incoming and outgoing sides; the windows can be evaluated in real time. Mean value windows are also possible. All window types can be freely used and

can also be overlapped.

x/y limit values Optional for monitoring minimum/maximum values at process start/end.

Coordinate systems:

1 range window

Tolerance window coordinates can be defined absolutely or relatively (dynamically). Use the relative system of coordinates if the absolute position of the fitting pieces (e.g. bearing/shaft) is not always the same. It is possible to mix these two window types.

Application:

Analysis with tolerance windows - Press-fitting female connectors

With relative x coordinates, all that is measured is the movement from the start or end position, *relative* to the x axis of the two fitting pieces.

Application:

Process analysis with a tolerance band or envelope curve

In these analyses, the curve trace is monitored partially (tolerance band) or continuously (envelope curve). If just one measured value lies outside the range, the test operation will be rated NOK. In envelope curve analysis, up to 4 segments with different tolerance limits can be selected.

One or more reference curves first have to be measured (teach-in) and then the tolerance band or envelope curve of max. 64 interpolation points is adapted to it/them. The automatic generation of tolerance band or envelope curves based on previously measured process curves can also be implemented manually retrospectively by mouse click.

Start/Stop conditions

The start/stop conditions are used to synchronize measurement with the production process. Signalling is optional via CANopen, PROFIBUS-DPV1, digital input or internal trigger.

Start/stop conditions are available for a wide variety of applications, such as:

- · External start and stop signal
- · Setpoint y and overshoot time
- · Setpoint x and overshoot time
- Setpoint x and setpoint y
- · Standstill recognition
- · Return detection for channel x

Operation and visualization

Standard operator panels (IPCs) can be used to visualize the process in situ. The device can also be integrated at a later date into existing systems. Connection is made via the (Fast) Ethernet interface of the MP85A(DP) devices. Numerous modules of the FASTpress Suite are provided as software solutions.

Quality control / Statistics / Counting

Quality and tool wear for the fitting process can be assessed using the statistics functions.

Statistics graphics can be called to clearly display OK/ NOK processes.

Global statistics with a process counter are grouped by parameter sets.

The tolerance window result can be read at a glance for each parameter set.

This allows

- Tool wear
- Component tolerances or
- Damage to a machine

to be detected early.

The graphic display in Counting can be used to analyze the distribution of the OK/NOK processes individually for each tolerance window.

Counting automatically calculates the distribution of the minima and maxima with accompanying standard deviation.

The statistics data are stored in the device.

Data management / Loading and storing

With the MP85A(DP), it is possible to store results, curves, statistics and the device settings. This allows processes to be analyzed later on and ensures 100% traceability.

You can choose whether to store the data on your PC or on the memory card in the device. Storage on a memory card can be set up as a circular buffer for the last 1,000 or 10,000 curves. In both cases, curves and/or results can be stored in ASCII or Qdas format:

- NOK processes only or
- OK processes only or
- All processes

The data on the memory card can then be transcribed to the PC. A report with all process information can be printed for each process if necessary.

A free HBM software tool can be used to automatically convert process data and results after storage in the data format I-P.M.

Management of production data

The MP85A(DP) offers the possibility of saving workpiece or component numbers in the ongoing production in the curve and result files. This ensures assignment and archiving.

Utilizing an existing infrastructure

The devices can be integrated in a network via the standard Ethernet interface. This makes it possible to set up production lines right up to remote maintenance.

Specifications

Basic device		MP85A / MP85ADP
Accuracy class		0.1
Supply voltage,		
Overvoltage and reverse polarity protection	V_{DC}	24
Isolation voltage, without transients	V _{DC}	< 60
Functional potential separation between the supply and transducer connection. Must not be used for safety considerations.	Do	
Permissible supply voltage range	V	1830
Power consumption		
MP85A, typically	W	7
MP85ADP, typically MP85A / MP85ADP, max.	W	9
<u>`</u>	**	
Behavior in the event of a supply voltage failure		Automatic data retention after power failure
Typical backup battery life (CR2032) for the realtime clock	Years	5
Evaluation unit specifications	I	
Max. number of triple measurement values		4000 (sutametic data maduation)
(channel x), (channel y), (time)	11-	4000 (automatic data reduction)
Sampling rate	Hz	2400
Start conditions		Internal start signal, External start signal Setpoint x, Setpoint y Setpoint x + Setpoint y
Stop conditions		Internal stop signal, external stop signal Setpoint y + Overshoot time, Setpoint x + Overshoot time Setpoint x + Setpoint y + Overshoot time Standstill recognition, Return channel x
Process end conditions		External signal Simultaneously with end of start condition Setpoint x, setpoint y Setpoint x and setpoint y
Number of parameter sets / Measurement programs in the device		31 plus factory setting
Number of parameter sets on the optional SD/MMC		31 in XML format
		1000 in binary format
Typical switching between parameter sets	ms	200
Evaluation		
Tolerance band		64 interpolation points, adjusted as required in calibration mod
Envelope curve		4 tolerance ranges, 64 interpolation points, freely selectable
Tolerance windows, maximum number		9
Type of window		Oblique or straight
Evaluation methods per window		Real time evaluation (online for machine protection)
		Analyzing the course of the curve in the window (min/max)
		Analyzing the mean x or y value in the window
		Analyzing vertical or horizontal thresholds (online)
x coordinates for the tolerance window		Absolute or relative to the start position, or relative to the end position
y coordinates for the tolerance window		Absolute or relative to F _{min} of tolerance window 2, relative to F _{max} of tolerance window 2 or relative to F _{mean} of tolerance window 2
Typical duration of offline evaluation, end window	ms	6
Typical duration of offline evaluation, straight window	ms	5 + 0.1/measurement pair in window
Typical duration of offline evaluation, oblique window	ms	10 + 0.3/measurement pair in window
x and y limit values		4 each Limit value monitoring can optionally also be included in the overall process evaluation, e.g. as min/max monitoring for process start/end.
Statistics (separate for each parameter set in Flash device r	memory)	<u> </u>
Maximum number of fitting processes	,	4 x 10 ⁹
Number of histogram classes for 2 values		9 per tolerance window
(x _{max} , x _{min} , y _{max} , y _{min})	1	L

kHz			4	4.8 ±1 %		
V_{rms}	2.5 ±5 %					
Ω			1	70 2000)	
mH				4 160		
Ω			1	70 2000)	
		Measuring range (mV/V)				
	4	4 100 10				1000
mV/V	0.2 4 3.5		5.5 100 5		50 1000	
m	500					
Digits	9	99999, a	at 10% of	f the input	measuring ra	ınge
Digits	100, at 100% of the input measuring range				ige	
V				±5.5		
dB				>120		
dB				>96		
%	< 0.03					
	Measuring range (mV/V)					
						1000
μV/V _{pp}	0.1					25
μV/V _{pp}						60 250
μV/V _{pp}	1 25 50				500	
1/s						
	Nominal (rated) value f _c	-1dB (Hz)	- 3dB (Hz)	Phase delay (ms)	Rise time (ms)	Oversho (%)
	` ′	980	1400	0.550	0.260	4
						1.5
						1.5
	100	100	160	2.9	2.13	1.3
	50	51	83	4.6	4.24	1
	20	25	41	8.2	8.36	1
	10	13	21	15.5	16.8	0
	5	6.1	10.3	30.2	33.4	0
	2	3.1	5.2	60	67	0
	1	1.6	2.6	119	137	0
	0.5	0.79	1.30	240	272	0
	0.2	0.19	0.32	950	1070	0
	0.1	0.09	0.16	2500	2170	0
	0.05	0.049	0.081	3750	4280	0
mV/V		1	1	1±3%	1	1
% f.s.	< 0.01					
% f.s.	< 0.01					
			Measur	ing range	(mV/V)	
	4			100		1000
	4	1 20				
μ V /V	1					200
μV/V	1 10			40		200
	1	i				
	V _{rms} Ω mH Ω mV/V m Digits Digits V dB dB dB dB γ μV/Vpp μV/Vpp μV/Vpp μV/Vpp 1/s	V _{rms} Q MH Ω Q MH Ω Q MH Ω Q MH Ω Q MH Q Q Q Q Q Q Q Q Q	V _{rms} Ω mH Ω A mV/V 0.2 4 m Digits 999999, a Digits 100, at 1 V dB dB dB dB dB dB % A μV/Vpp μV/Vpp μV/Vpp μV/Vpp μV/Vpp 1 1 (rated) value f _c (Hz) 1000 980 500 440 200 190 100 100 50 51 20 25 10 13 5 6.1 2 3.1 1 1.6 0.5 0.79 0.2 0.19 0.1 0.09 0.05 0.049 mV/V % f.s.	V _{rms} Ω 1 Measure 4 mV/V 0.2 4 3 Measure 4 mV/V 0.2 4 3 Measure 4 mV/V 0.2 4 3 Measure 4 Measure 4	V _{rms} 2.5 ± 5 % Ω mH	V _{rms} 2.5 ± 5 % Ω

DC-voltage transducers		
Transducers that can be connected		DC-voltage transducers, voltage sources
Nominal (rated) measuring range	V	±10
Input signal range	V	±10.5
Scaling range, max.	Digits	999999, at 10% of the input measuring range
Scaling range, min.	Digits	100, at 10% of the input measuring range
Internal resistance of the signal source	kΩ	≤1
Permissible common-mode voltage, max.	V	2
Measurement frequency range, adjustable (-1 dB)	Hz	0.05 1000
Filter characteristics	П	
	0/	Bessel, 4th order
Linearity error	%	< 0.03
Sampling rate, max.	1/s	2400
Incremental encoder		
Transducers that can be connected		Incremental transducers (up/down counter with zero index signal)
Voltage supply		5 V, max. 150 mA or 24 V, max. 300 mA
2-channel mode		Time-division multiplex method
Inputs (F1 (±), F2 (±), lx (±))		Differential inputs (RS422), TTL level 5 V
Input level		
Low level	V	<0.8
High level	V	>2
Each line to measurement ground, max. Level difference (Low/High)	V	±14
	V	>1.2 0.07
Hysteresis Permissible common-mode voltage, max.	V	-7 / +12
Input impedance, typical	kΩ	10
Detection of direction of rotation	K52	via ±90° phase-shifted signal F2
	Pulses	0 999999
Input range pulse counting Maximum pulse rate	Pulses	1 000 000
Maximum puise rate	/s	1 000 000
Interval between 2 successive edges $F1(\pm)$, $F2(\pm)$	ns	>400
Scaling range, max.	Digits	20 at 1 pulse
Scaling range, min.	Digits	1 at 10000 pulses
Measurement frequency range, adjustable (-1 dB)	Hz	0.05 1000
Sampling rate, max.	1/s	2400
SSI transducers		
Transducers that can be connected		Displacement and angle transducers with SSI interface
Voltage supply		5 V, max. 150 mA or 24 V, max. 300 mA
2-channel mode		Time-division multiplex method
Data input D(±)		Differential input (RS422), TTL level 5 V. The voltage levels must be complementary to each other and display a difference of min. 1.2 V.
Input levels, data input D (\pm)		
Low level High level	V	<0.8 >2
Fligh level Each line to measurement ground, max.	V	±14
Hysteresis	V	0,07
Permissible common-mode voltage, max.	V	-7 +12
Clock output CI (±)	-	Differential output (RS422), TTL level 5 V
Differential output voltage $Cl(\pm)$, without load, max.	V	5.8
Differential output voltage $Cl(\pm)$, $RL = 50$ ohm, min.	V	2
Common-mode voltage at Cl (±), max.	V	3
Short-circuit current, clock output CI (±), typically	mA	100
Resolution, single turn	Bit	12, 13
Resolution, multi-turn	Bit	24, 25
Scaling range, max.	Digits	20 at 1 pulse
Scaling range, min.	Digits	1 at 10000 pulses
Measurement frequency range, adjustable (-1dB)	Hz	0.05 1000
Sampling rate, max.	1/s	1200
Baud rates	kBaud	100, 200, 500, 1000
Coding		Gray code
HBM	10	B2042–5.0 en

Potentiometric displacement transducer	Potentiometric sensors (termination resistance 170
·	2000 Ohm) are supplied with 4.8 kHz carrier frequency (see
	specifications "Transducer and amplifier")

Note: If potentiometric sensors of type TR50, TR75 or TR100 are used from the company novotechnik (termination resistance > 2 kOhm), the accuracy class of the measurement chain changes to 0.25. The same applies to other sensors where the termination resistance is more than 2 kOhm, as a linear characteristic curve is no longer given in these cases.

General specifications		
Limit value switch		
Number		4 per channel
Reference level		Gross
Hysteresis	%	1 100
Adjustment accuracy	Digit	1
Response time, typically (fc=1000 Hz)	ms	<2
Control outputs		
Number		4 (MP85ADP) / 8 (MP85A), galvanic separation
Function		Process OK/NOK, process started/running, process finished/valid, limit values 1–4, transducer test result, tolerance window result, memory card status, channel x/y status, transfer memory status, channel x/y error, heartbeat (watchdog), parameter set selection, parameter set No. (Flash), piezosensor reset, digital output via SDO specification
Nominal (rated) voltage, external power supply	V_{DC}	24
Permissible supply voltage range	V	10 30
Maximum output current per output	Α	0.5
Short-circuit current, typically (U _{ext} . = 24 V, R _L < 0.1 ohm)	Α	0.8
Short-circuit period		unlimited

Control inputs					
Number		1 (MP85ADP) / 5 (MP85A), galvanic separation			
Function		Zero balance, shunt calibration, parameter set selection, start/stop process, transducer test, save/delete statistics			
Input voltage range LOW	V	0 5			
Input voltage range HIGH	V	10 30			
Input current, typically, (High level = 24 V)	mA	12			
Ethernet interface					
Transmission protocol	MBit/s	TCP/IP, can be networked per IEEE802			
Transfer rate, max.	MBit/s	10 and 100 (automatic selection)			
Topology (twisted pairs)		2			
LED display for Receiver, Transmitter (RxD/TxD) and Link		2			
Line length, maximum	m	100			
Cable type		UTP category 5 or shielded twisted pair (STP)			
Connecting socket		RJ-45			
CAN interface	'				
Protocol		CAN 2.0B; CANopen compatible			
Hardware bus link		to ISO 11898			
PDO rate, max.	Mea- sured val- ues/s	100			
Baud rates Maximum line lengths	kBits/s m	1000 500 250 125 100 50 20 10 25 250 500 1000 600 1000 1000 1000			
Termination resistor		Connectable by switch			
Connection		Terminals			
PROFIBUS-DP interface (MP85ADP only)	<u> </u>				
Protocol		PROFIBUS-DP Slave, as per DIN19245-3			
Baud rate, max.	MBaud	12			
Node address		3–123, set via the keyboard			
PROFIBUS ID number		Hex 699			
Configuration data	Byte	5			
Parameter data , max.	Byte	6 (+7DP standard)			
Function		Access to and parameterization of all MP85ADP functions (remote control)			
Parameterization (asynchronous)		per DPV1 standard			
Input data , max.	Byte	142			
Output data, max.	Byte	40			
Input data update rate	ms	1 (for 4 measured values)			
Output data update rate	ms	<10, for zero setting, limit values			
Diagnostic data	Byte	48			
PROFIBUS connection	-	9-pin sub-D (DIN19245-3), galvanic separation from power supply and measurement ground			

Memory card		
Function		Storage of: Parameter sets, curves and results, statistics, circular buffer of last 1,000/10,000 curves
Usable types		MMC or SD card (no SDHC (High Capacity) or similar)
Usable sizes	MByte	8, 16, 32, 64, 128, 256, 512, 1024, 2048
Data transmission rate, typically	kBytes /s	2–8
File system		DOS, FAT 16 format
Display		
Туре		2-line, 8-character alphanumeric, LCD
Keypad		Touch-sensitive keypad with three keys, pressure-sensitive
Temperature range		
Nominal (rated) temperature range	°C	0 50
Operating temperature range	°C	–20 +50
Storage temperature range	°C	–20 +70
Degree of protection		IP20
Dimensions (W x H x D)	mm	59 x 150 x 152
Weight, approx.	g	929
Mechanical stress capability (test similar to DIN IEC 60068, Part 2-6)		
Oscillation (30 mins in each direction)	m/s ²	50 (5 65 Hz)
Impact (3 times in each direction; impact duration 11 ms) (test similar to DIN IEC 60068, Part 2–27)	m/s ²	200

Dimensions of the PME modules:

Scope of supply

4 plug-in screw terminals, coded

1x voltage supply and CAN, 6-pin

2 x transducers, 8-pin

1x In/Out digital, 8-pin

Phoenix order number:

MV STBW 2.5/6-ST-5.08 GY

MCVW 1.5/8-ST-3.81 GY

MC 1.5/8-ST-3.5 GY

HBM order number:

3-3312.0426

3-3312.0422

3-3312.0421

FASTpress Suite system CD with:

Free PME Assistant setup software

Online Help with Tricks&Tips

Quick Reference Guide for beginners

PME Assistant Plus tools (demo version) with:

EASYsetup (user administration)

EASYteach (statistical process analysis and report generation)

MP85A Toolkit (demo version):

Function module kit for creating separate interfaces on operator panels via Ethernet under Windows XP, Windows CE and WindowsMobile

EASYMonitor CE (demo version):

Production software for operation via a terminal using the operating system Windows CE

EASYmonitor mobile: Application for operation via a PDA or pocket PC

INDUSTRYmonitor (demo version):

Production software for operation on Touch Panels with max. 12 MP85A(DP)-(S)-process controllers

Accessories (not included in the scope of supply):

Memory card MMC or SD card, e. g. from Transcend (www.transcend.de)

Standard flat ribbon cable, 10-pin, 1.27 mm pitch (HBM order number: 4-3131.0037)

©Hottinger Baldwin Messtechnik GmbH. Subject to modifications. All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability.

Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 Fax: +49 6151 803-9100 Email: info@hbm.com · www.hbm.com

