Safety valves direct, pilot operated and cartridge execution with inductive position or proximity switches conforming to Machine Directive 2006/42/CE

Safety valves are designed to fulfil the safety criteria imposed to machine manufacturers by the European Machine Directive. They are CE marked and certified by TUVV, in accordance with the technical safety requirements provided in the Machine Directive 2006/42/CE but not included in the safety components of annex IV.
In addition to the normal hydraulic function they are equipped with inductive or proximity switches; with the on/off switch indicates the position of the spool/poppet of the valve. These valves are normally used to cut off the hydraulic power line in case of emergency condition, thus avoiding dangerous movements of the machines actuators. By checking the switch status, corresponding to "open" or "intercepted" hydraulic line, the machine controller can perform the safety function.
Two versions are available:

- Fl inductive proximity switch ①

FV inductive position switch (double contacts) (2);
see section 14 for technical characteristics.
Safety valves are available in direct, piloted and cartridge executions, with same hydraulic and electric characteristics of standard products from which they are derived.
Typical application is on vertical and horizontal presses to shut off the fluid energy to one or more actuators as a consequence of the opening of the machine "gate" or as a consequence of an "emergency stop" command.
For details about the applicable EN standards, see www.atos.com, catalog on line, section P, table P004.

1 RANGE OF VALVE'S MODELS

Valve code	Size	Description	DC solenoids		AC solenoids	
			Switch type			
			/FI	$/ F V$	/FI	/FV
DHI-06	06	direct operated solenoid valves, on-off, single solenoid	\bullet	\bullet	\bullet	\bullet
DHI-07	06	direct operated solenoid valves, on-off, double solenoid	\bullet		\bullet	
DHE-06	06	direct operated solenoid valves, on-off, single solenoid	\bullet	\bullet	\bullet	\bullet
DHE-07	06	direct operated solenoid valves, on-off, double solenoid	\bullet	\bullet	\bullet	
DKE-16	10	direct operated solenoid valves, on-off, single solenoid	\bullet	\bullet	\bullet	\bullet
DKE-17	10	direct operated solenoid valves, on-off, double solenoid	\bullet	\bullet	\bullet	
DKER-16	10	direct operated solenoid valves, on-off, single solenoid	\bullet		\bullet	
DKER-17	10	direct operated solenoid valves, on-off, double solenoid	\bullet		\bullet	
DPH*	16; 25	piloted operated solenoid valves, on-off, with DHE or DHI pilot		\bullet		\bullet
LIFI	$16 \div 50$	intermediate elements with cartridge, to be coupled with a specific cover	\bullet		\bullet	
LIDA(H)	$16 \div 50$	on-off cartridges		\bullet		\bullet
LIDAS(H)	$16 \div 50$	on-off active cartridges		\bullet		\bullet

2 MODEL CODE OF DIRECTIONAL CONTROL SAFETY SOLENOID VALVES

Options (1) For available options see: tab. E010 for DHI
tab. E015 for DHE and DHER
tab. E025 for DKE and DKER
tab. E085 for DPH*.

Type of switch:

FI = inductive proximity switch
FV = inductive position switch (double contact)
Option WP not permitted for safety valves
note: see section for valve model and switch type combination
(1) For /FI version, DKE and DKER are always provided with Y drain port.

3 CONFIGURATIONS and SPOOLS

Valve type DH* and DK*

Valve type DPH*

4.1 MODEL CODE FOR INTERMEDIATE ELEMENT INCLUSIVE OF THE CARTRIDGE

Note: in these safety valves the cartridge and the intermediate element with poppet position detector cannot be separated.
4.2 COVER MODEL CODE
 LIDEW (in the configuration with external pilot line) Atos can supply leak free poppet type directional pilot valves type DLOH-3*. Consult our technical office for detailed information.

5 HYDRAULIC SYMBOLS (the following symbols shown the covers function coupled with safety valve type LIFI)

6 MODEL CODE OF SAFETY VALVES IN CARTRIDGE EXECUTION (INTEGRAL DESIGN COVER) 7 HYDRAULIC SYMBOLS OF LIDA
LIDA H - $25 \quad 43 \quad 3$ / FV / I X 24DC ** /*

8 MODEL CODE OF SAFETY VALVES IN CARTRIDGE EXECUTION (INTEGRAL DESIGN COVER)

3 = spring cracking pressure 3 bar
Optional poppet sensor
FV = inductive proximity switch
Pilot valve only for LIDAH:
-I = DHI for AC and DC supply with cURus certified solenoids

- $\mathbf{E}=\mathrm{DHE}$ for $A C$ and $D C$ supply high performances

9 HYDRAULIC SYMBOLS OF LIDAS

10 STATUS OF OUTPUT SIGNALS

11 voltage code

Valve	External supply nominal voltage $\pm 10 \%$	Voltage code	Type of connector	Power consumption
$\begin{aligned} & \text { DHI } \\ & \text { DPHI } \end{aligned}$	6 DC	6 DC	$\begin{gathered} 666 \\ \text { or } \\ 667 \end{gathered}$	33 W
	9 DC	9 DC		
	12 DC	12 DC		
	14 DC	14 DC		
	18 DC	18 DC		
	24 DC	24 DC		
	28 DC	28 DC		
	48 DC	48 DC		
	110 DC	110 DC		
	125 DC	125 DC		
	220 DC	220 DC		
LIDAH-I	$24 / 50 \mathrm{AC}$	24/50/60 AC ${ }^{(1)}$		60 VA
	24,60 AC			
	$\begin{aligned} & 48 / 50 \mathrm{AC} \\ & 48 / 60 \mathrm{AC} \end{aligned}$	48/50/60 AC ${ }^{(1)}$		
	$\begin{aligned} & \text { 110/50 AC } \\ & \text { 120/60 AC } \end{aligned}$	110/50/60 AC 120/60 AC		
	230/50 AC	230/50/60 AC ${ }_{(1)}$		
	230/60 AC	230/60 AC ${ }^{(1)}$		
	110/50 AC	110RC	669	40 VA
	120/60 AC			35 VA
	$230 / 50 \mathrm{AC}$	230RC		$40 \mathrm{VA}$

Valve	External supply nominal voltage $\pm 10 \%$	Voltage code	Type of connector	Power consumption
$\begin{aligned} & \text { DHE } \\ & \text { DHER } \\ & \text { DPHE } \end{aligned}$	12 DC	12 DC	$\begin{gathered} 666 \\ \text { or } \\ 667 \end{gathered}$	30 W
	14 DC	14 DC		
	24 DC	24 DC		
	28 DC	28 DC		
	48 DC	48 DC		
	110 DC	110 DC		
	125 DC	125 DC		
	220 DC	220 DC		
LIDAH-E LIDASH-E	110/50 AC	110/50/60 AC		58 VA
	230/50 AC	230/50/60 AC		
	115/60 AC	115/60 AC		
	230/60 AC	230/60 AC		
	110/50 AC $120 / 60 \text { AC }$	110 RC	669	
	230/50 AC			
	230/60 AC	230 RC		
DKE DKER	12 DC	12 DC	666	36 W (DKE) 39W (DKER)
	24 DC	24 DC		
	110 DC	110 DC		
	220 DC	220 DC		
	110/50/60 AC	110/50/60 AC	667	$\begin{gathered} 85 \text { VA (DKE) } \\ 105 \text { VA (DKER } \end{gathered}$
	230/50/60 AC	230/50/60 AC		
	110/50/60 AC	110 DC	669	36 W (DKE)39 W (DKER)
	230/50/60 AC	220 DC		

Installation position		Any position
Subplate surface finishing		Roughness index Ra 0,4 - flatness ratio 0,01/100 (ISO 1101)
Ambient temperature		from $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Fluid		Hydraulic oil as per DIN 51524 535; for other fluids see specific model code
Recommended viscosity		$15 \div 100 \mathrm{~mm}^{2} / \mathrm{s}$ at $40^{\circ} \mathrm{C}$ (ISO VG $15 \div 100$)
Fluid contamination class		ISO 4406 class 21/19/16 NAS 1638 class 10, in line filters of $25 \mu \mathrm{~m}$ ($\beta 10 \geq 75$ recommended)
Fluid temperature		$-20^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$ (standard seals) $\quad-20^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$ (/PE seals)
Flow direction		As shown in the symbols of tables 3
Operating pressure	DHI	$\mathrm{P}, \mathrm{A}, \mathrm{B}=\mathbf{3 5 0}$ bar T = $\mathbf{1 0 0}$ bar (version /FI); $\mathbf{1 2 0}$ bar (version/FV)
	DHE	P, A, B = $\mathbf{3 5 0}$ bar $\mathrm{T}=\mathbf{1 0 0}$ bar (version /FI); $\mathbf{2 1 0}$ bar (DC solenoid - version /FV); $\mathbf{1 6 0} \mathbf{b a r}$ (AC solenoid - version /FV)
	DKE	$\begin{aligned} & \text { P, A, B = } \mathbf{3 5 0} \text { bar } \\ & \mathrm{T}=(\text { (with Y port not connected to tank) } \mathbf{1 0 0} \text { bar (version /FI); } \mathbf{2 1 0} \text { bar (DC solenoid - version /FV); } \\ & \quad \mathbf{1 2 0} \text { bar (AC solenoid - version /FV) } \\ & \mathrm{T}=(\text { with } \mathrm{Y} \text { port drained to tank) } \mathbf{2 5 0} \text { bar } \end{aligned}$
	DKER	$\left\lvert\, \begin{aligned} & \mathrm{P}, \mathrm{~A}, \mathrm{~B}=\mathbf{3 5 0} \text { bar } \\ & \mathrm{T}=\text { (with Y port not connected to tank) } \mathbf{1 0 0} \text { bar (version /FI); } \mathbf{2 1 0} \text { bar (DC solenoid - version /FV); } \\ & \quad \mathbf{1 6 0} \text { bar (AC solenoid - version /FV) } \\ & \mathrm{T}=(\text { with } \mathrm{Y} \text { port drained to tank) } \mathbf{2 5 0} \text { bar } \end{aligned}\right.$
	DPH*	P, A, B, X=350 bar $\mathrm{T}=\mathbf{2 5 0}$ bar for external drain (standard) T with internal drain (option /D) = $\mathbf{1 2 0}$ bar DPHI; 210 bar DPHE (DC); $\mathbf{1 6 0}$ bar DPHE (AC) Ports $Y=0$ bar Minimum pilot pressure for correct operation is 8 bar
	LIFI LIDA/FV LIDAS(H)	A, B, $X=\mathbf{3 1 5}$ bar $\mathrm{Y}=$ see port T of selected pilot valve (DHI, DHE or DHER) A, B, $X=\mathbf{3 5 0}$ bar $-\mathrm{Y}=\mathbf{2}$ bar (for LIDASH)
Maximum flow	DHI	$60 \mathrm{l} / \mathrm{min}$ see technical table E010, section 8 , operating limits
	DHE, DHER	$\mathbf{8 0} \mathrm{l} / \mathrm{min}$ see technical table E015, section 9, operating limits
	DKE	$\mathbf{1 5 0}$ I/min see technical table E025, section 9, operating limits
	DPH*	$\mathrm{DPH}^{*}-2: \mathbf{3 0 0} \mathrm{I} / \mathbf{m i n} ; \mathrm{DPH}^{*}-4$: $\mathbf{7 0 0 1 / m i n}$;
	LIFI (at $\Delta \mathrm{P}=6$ bar)	poppet 42 size $16=\mathbf{1 5 0} \mathbf{I} / \mathbf{m i n}$; size $25=\mathbf{3 2 0} \mathbf{I} / \mathbf{m i n}$; size $32=\mathbf{6 0 0} \mathbf{I} / \mathbf{m i n}$; size $40=\mathbf{1 2 5 0} \mathbf{l} / \mathbf{m i n}$; size $50=\mathbf{2 0 0 0} \mathbf{I} / \mathbf{m i n}$ poppet 43 size $16=\mathbf{1 3 0} \mathbf{I} / \mathbf{m i n}$; size $25=\mathbf{3 0 0} \mathrm{I} / \mathbf{m i n}$; size $32=\mathbf{4 8 0} \mathrm{I} / \mathbf{m i n}$; size $40=\mathbf{9 4 0} \mathrm{I} / \mathbf{m i n}$; size $50=\mathbf{1 5 0 0} \mathbf{l} / \mathbf{m i n}$
	LIDA/FV (at $\Delta \mathrm{P}=6$ bar)	poppet 43 size $16=\mathbf{1 3 0} \mathbf{I} / \mathbf{m i n}$; size $25=\mathbf{3 0 0} \mathbf{l} / \mathbf{m i n}$; size $32=\mathbf{4 8 0} \mathbf{I} / \mathbf{m i n}$; size $40=\mathbf{9 4 0} \mathrm{I} / \mathbf{m i n}$; size $50=\mathbf{1 5 0 0} \mathbf{I} / \mathbf{m i n}$
	LIDAS(H) (at $\Delta P=5$ bar)	poppet 43 size $16=\mathbf{2 2 0} \mathbf{I} / \mathbf{m i n}$; size $25=\mathbf{4 0 0} \mathrm{I} / \mathbf{m i n}$; size $32=\mathbf{6 0 0} \mathrm{I} / \mathrm{min}$; size $40=\mathbf{1 3 0 0} \mathbf{I} / \mathbf{m i n}$; size $50=\mathbf{2 0 0 0} \mathrm{I} / \mathrm{min}$

12.1 Coils characteristics

Insulation class	H $\left(180^{\circ} \mathrm{C}\right)$ for all valves with DC coils and DHI, DPHI with AC coils F $\left(155^{\circ} \mathrm{C}\right)$ for DHE, DHER, DKE, DKER, DPHE with AC coils Due to the occuring surface temperatures of the solenoid coils, the European standards EN ISO 13732-1 EN ISO 4413 must be taken into account
Connector protection degree	IP 65
Relative duty factor	100%
Supply voltage and frequency	See electric feature 困
Supply voltage tolerance	$\pm 10 \%$
Certification (only DHI, DKER, DPHI)	cURus North American standard

WARNING: the inobservance of following prescriptions invalidates the certification and may represent a risk for personnel injury Safety valves must be installed and commissioned only by qualified personnel Safety valves must not be disassembled
The inductive proximity switch or the position switch can be adjusted only by the manufacturer
Valve's components cannot be interchanged
The valves must operate without switching shocks and spool / poppet vibrations

Diagrams show the behaviour of the output signal for inductive switches type $\mathbf{F I} / \mathbf{N O}$. For inductive switches type $\mathbf{F I} / \mathbf{N C}$ the behaviour is opposite (high level signal instead of low level signal and viceversa)
(1) According the criteria of safety specifications, the spool position signal must change its status during the intermediate position between two hydraulic configurations.
Note: FV versions can be electrically wired by the customer as NO or NC and then the status of the output signal will be in accordance to the selected configuration

14 TECHNICAL CHARACTERISTICS OF INDUCTIVE PROXIMITY AND POSITION SWITCHES

Type of switch	inductive proximity /FI	position switch /FV	inductive proximity - only for LIFI
Supply voltage [V]	10 $\div 30$	20 $\div 32$	10 $\div 30$
Ripple max [\%]	≤ 10	≤ 10	≤ 5
Max current [mA]	100	400	200
Power consumption [mA]	10	-	8
Voltage drop [V]	≤ 3	-	$\leq 1,5$
Max switching frequency [Hz]	1000	-	1000
Max peak pressure [bar]	20	400	350
Mechanical life	virtually infinite		
Switch logic	PNP		

15 CONNECTING SCHEMES OF INDUCTIVE PROXIMITY AND POSITION SWITCHES

$\mathrm{DH}^{\star} / \mathrm{FI}$ single solenoid / double solenoid (dotted line)	/FV (all valves) single and double solenoid	DKE*/FI single solenoid	DKE*/FI double solenoid	LIFI
Connector type 345	Connector type ZBE-06 $\begin{aligned} & 1=\text { supply }+24 \mathrm{VDC} \\ & 2=\text { output signal } \mathrm{NC} \\ & 3=\text { GND } \\ & 4=\text { output signal NO } \end{aligned}$	Connector type 666 $\begin{aligned} & 1=\text { output signal S } \\ & 2=\text { supply }+24 \mathrm{VDC} \\ & \mathbb{E}=\mathrm{GND} \end{aligned}$	Connector type 664 $$	Connector type BKS-B-20-4-03 $\begin{aligned} & \text { black = output signal } \\ & \text { brown = supply }+24 \text { VDC } \\ & \text { blue = GND } \\ & \text { CABLE LENGHT }=3 \mathrm{~m} \end{aligned}$

NOTE: the /FI switch an /FV position switch are not provided with a protective earth connection

16 CONNECTORS FOR INDUCTIVE PROXIMITY AND POSITION SWITCHES
The connector for proximity switch and mechanical microswitches are always supplied with the valves

VALVE TYPE	CONNECTOR TYPE	protection degree
DHI/FI, DHE/FI	345	IP65
DHI/FV, DHE/FV, DKE/FV	ZBE-06	IP65
DKE/FI, DKER/FI	$\mathbf{6 6 6}$ (single solenoid) $-\mathbf{6 6 4}$ (double solenoid)	IP65
DPH*/FV	ZBE-06	IP65
LIDA $/$ /FV	ZBE-06	IP65
LIFI	BKS-B-20-4-03 Special connector with 3 mt molded cable (included)	IP67
LIDAS $* /$ FV	ZBE-06	IP65

NOTE: valve type $\mathrm{DKE}^{\star} /$ FI double solenoid, configuration 75, use connector 666

ISO 4401: 2005

Mounting surface: 4401-03-02-0-05
Fastening bolts:
4 socket head screws: M5 $\times 50$ class 12.9 (DHI, DHU)
M 5×30 class 12.9 (DHE, DHER)
Tightening torque $=8 \mathrm{Nm}$
Seals: 4 OR 108
Ports P,A,B,T: $\varnothing=7.5 \mathrm{~mm}(\max)$

P = PRESSURE PORT
A, $\mathbf{B}=$ USE PORT
T = TANK PORT
For the max pressures on ports, see section 12

DHI-06*/FI (DC, AC)
DHI-07*/FI (DC, AC) dotted line

Mass:
kg 1,6 (one solenoid)
kg 1,9 (two solenoids)

DHI-06*/FV (DC, AC)

DHE-06*/FI (DC)
DHE-07*/FI (DC) dotted line

DHE-06*/FV (DC)

DHE-06*/FI (AC)
DHE-07*/FI (AC)
DHE-07*/FI (AC) dotted line

Mass:
kg 1,85 (one solenoid)
kg 2,1 (two solenoids)
DHE-06*/FV (AC)

DHE-07*/FV (DC)

DPH****/FV
ISO 4401: 2005
Mounting surface: 4401-07-07-0-05
Fastening bolts:
4 socket head screws M10x50 class 12.9
Tightening torque $=70 \mathrm{Nm}$
2 socket head screws M6x45 class 12.9
Tightening torque $=15 \mathrm{Nm}$
Diameter of ports $A, B, P, T: \varnothing=20 \mathrm{~mm}$;
Diameter of ports $\mathrm{X}, \mathrm{Y}: \varnothing=7 \mathrm{~mm}$;
Seals: 4 OR 130, 2 OR 2043

P = PRESSURE PORT
$\begin{aligned} \mathbf{A}, \mathbf{B} & =\text { USE PORT } \\ \mathbf{T} & =\text { TANK POR }\end{aligned}$
$\mathbf{X}=$ EXTERNAL OIL PILOT PORT
$\mathbf{Y}=$ DRAIN PORT
For the max pressures on ports, see section 12

Note: for configurations 71 and 75 the switch position in on both sides of the valve

Mass:
kg 9,6 (one solenoid)
kg 10,5 (two solenoids)

DPH*-4*/FV

SO 4401: 2005

Mounting surface: 4401-08-08-0-05

Fastening bolts:
6 socket head screws M12×60 class 12.9
Tightening torque $=125 \mathrm{Nm}$
Diameter of ports A, B, P, T: $\varnothing=24 \mathrm{~mm}$;
Diameter of ports $X, Y: \varnothing=7 \mathrm{~mm}$;
Seals: 4 OR 4112, 2 OR 3056
$\mathbf{P}=$ PRESSURE PORT
A, B = USE PORT
$\mathbf{T}=$ TANK PORT
$\mathbf{X}=$ EXTERNAL OIL PILOT PORT
$=$ DRAIN PORT
For the max pressures on ports see section 12

	A	B	H	H1	H2	L	P
LIFI-16	54,5	94	50	25	56	72	65
LIFI-25	54,5	97	55	28	59	85	85
LIFI-32	47	97	60	28	59	100	100
LIFI-40	41	103,5	60	30	61	125	125
LIFI-50	44	114	70	30	61	140	140

Note: for cover interface and cavity dimensions ISO 7368, see table P006

21 EXAMPLES OF LIFI COUPLED WITH OTHER COVERS (examples in size 32)

22 INSTALLATION DIMENSIONS of LIDA*/FV and LIDAS*/FV SAFETY CARTRIDGES [mm] (examples in size 32)

LIDAS-*/FV, LIDASH-*/FV
Connector ZBE-06

Note: for cover interface and cavity dimensions ISO 7368, see table P006

Size	LIDA				LIDAH				LIDAS				LIDASH				Seal		Fastening bolts			Tightening torque (Nm)
	A	B	B_{1}	B_{2}	A	B	B1	B_{2}	A	B	B_{1}	B_{2}	A	B	B_{1}	B_{2}	LIDA	OTHER	LIDA	LIDAH	LIDAS, LIDASH	
16	50	65×80	40.5	39.5	85	65×80	40.5	39.5	85	65	39.5	39.5	95	65×72	32.5	39.5	1 OR 108	2 OR 108	$4 \mathrm{M} 8 \times 50$	$4 \mathrm{M} 8 \times 70$	$4 \mathrm{M} 8 \times 80$	35
25	50	85	42.5	42.5	85	85	42.5	42.5	98	85	42.5	42.5	115	85	42.5	42.5	1 OR 108	2 OR 108	4 M12x55	4 M12x80	4 M12x95	125
32	65	100	50	50	85	100	50	50	107	100	50	50	116	100	50	50	1 OR 2043	2 OR 2043	4 M16x70	$4 \mathrm{M} 16 \times 70$	4 M16x105	300
40	65	125	62.5	62.5	85	125	62.5	62.5	110	125	62.5	62.5	125	125	62.5	62.5	1 OR 2050	2 OR 2050	$4 \mathrm{M} 20 \times 80$	$4 \mathrm{M} 20 \times 80$	$4 \mathrm{M} 20 \times 70$	600
50	65	140	70	70	85	140	70	70	130	140	70	70	135	140	70	70	1 OR 2050	2 OR 2050	$4 \mathrm{M} 20 \times 80$	$4 \mathrm{M} 20 \times 80$	$4 \mathrm{M} 20 \times 80$	600

