Datasheets 2016

Also available at www.thiim.com

Electronic modules

The standard products cover a wide selection of transducers and electronic control relays.

Additionally we produce for special applications, covering all stages from development to final production and testing.

The products are flexible in design and customization is possible.
www.thiim.com

Thiim A/S
Transformervej 31
2860 Søborg
Denmark

	Type	Input	Function	Input or supply Range	Page
Control relays					
Current, Single phase	IMCA	AC-DC	Multifunction, 12 ranges for under or over current in one unit	0.5mA - 10A	1
	IDRA	DC	Low cost. 4 standard currents	3-16A	3
	ILUA	DC	Current loop relay	4-20mA	5
	ILUB	DC	Current loop relay w. precision adjustment	4-20mA	5
With through hole for CT	IMAA		Current, Earth leakage and Differential current Multifunction with 12 current ranges in one unit	5mA - 100A	7
	IADA	AC	Current detecting relay with delayed drop out. 12VDC supply.	9-16VDC	9
	DDCA	DC	Current, Earth leakage and Differential current. 6 current settings	5-200mA	11
	DDCB	DC	Current, Earth leakage and Differential current. External coil	5-200mA	13
DC earth leakage monitor	DDEA	DC	Current, Earth leakage for DC unearthedit systems	0,2mA-30mA	15
	DDEB	DC	Current, Symmetric \& asymmetric leakage for DC unearthed systems	0,2mA-30mA	17
Voltage, Single Phase	UMCA	AC-DC	Multifunction, 11 ranges in one	50 mV - 500 V	21
	UAWA	AC	Window voltage relay. Individual Low \& high voltage setting.	100-415V	23
Incl frequency control	UFWA	AC	Window voltage \& frequency relay. Individual Low \& high voltage setting	100-415V	25
Voltage, 3 phase 4 wire	PNDA	AC 4w	Phase under voltage \& phase sequence	100-480V	27
	PNDI	AC 4w	Phase under voltage \& phase sequence with true time delay	100-480V	
Current and Voltage Single phase	IUAB	AC	Current relay with voltage compensated setpoint	0,2A-2,5A	29
Battery Control relays					
	BMCA	DC	Battery low voltage monitoring relay. For $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$ \& 110 V batteries.	8-180 VDC	31
			Replacement for BVCD, BVCE, BVCF		
	BMCD	DC	Battery high/low voltage monitoring relay. For $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$ \& 110 V batteries.	8-180 VDC	31
	BMWB	DC	Universal DC voltage relay. Individual Low \& High voltage plus hysteresis setting	12.5-340V	33
	BVSA	DC	Battery symmetry monitoring relay	12, $24,48 \mathrm{~V}$	35
	BMSA	DC	Battery symmetry monitoring relay with digital setting and display Symmetry setting: 1 to 20% of cell voltage	24-256V	37
	BRIA	DC	DC ripple relay. Setting: $0.4-6.4 \%$ ripple	18-340V	41
Phase failure relays, 3 or 4 wire					
Voltage and asymmetry	PADA	AC 3w	Unbalance \& Balanced under \& over voltage	100-480V	43
	PADI	AC 3w	PADA with true time delay	100-480V	43
	PANA	AC 4w	PADA with test for Neutral	100-480V	43
	PANI	AC 4w	PADA with test for Neutral and true time delay	100-480V	43
Incl phase rotation	PAHA	AC 3w	Phase rotation w. 2 relays, Unbalance \& Balanced under \& over voltage	100-480V	45
	PAHI	AC 3w	PAHA with true time delay	100-480V	45
	PAMA	AC 4w	PAHA with test for Neutral	100-480V	45
	PAMI	AC 4w	PAHA with test for Neutral and true time delay	100-480V	45
Frequency, voltage and asymmetry	PAFA	AC 3w	Frequency 50,60 and 400 Hz , Unbalance \& Balanced under \& over voltage	100-480V	47
			PAFA with test for Neutral	100-480V	47
Incl phase rotation	PAFB	AC 3w	PAFA with test for Phase rotation	100-480V	47
	PAGB	AC 4w	PAFA with test for Phase rotation and Neutral	100-480V	47
Phase, Neutral \& Ground monitoring relays 3,4 and 5 wire					
	PMSA	AC	RMS Neutral to Ground plus RMS Phase to Neutral or RMS Phase to Phase measurement	$\begin{aligned} & 50-830 \mathrm{~V} \\ & \text { Sup. } 18-288 \mathrm{~V} \end{aligned}$	49
Load monitoring relays Power factor $\operatorname{Cos} \varphi$					
	LMCB	Ph.Angle	Over or Under load. 2, 3 and 4 wire	$\begin{gathered} 24-440 \mathrm{~V} \\ 0,5-10 \mathrm{~A} \end{gathered}$	53
Active power	LMWB	AC Watt	Real Watt. Min. \& Max. load or 2 individuak Min. or Max. values. Analogue adjustment. 2,3 and 4 wire. Terminals for PTC monitoring of motors.	$\begin{gathered} 0-480 \mathrm{~V} \\ 0-12 \mathrm{~A} \end{gathered}$	55
Starter inhibit and over speed	FRAA	Freq.	Frequency range from 10 to 5120 Hz . Transformer, Namur or optocoupler input	12 V	61
	FRBA	Freq.	Frequency range from 10 to 5120 Hz . Transformer, Namur or optocoupler input	24 V	61
Starter inhibit	FAAA	Freq.	Frequency range from 10 to 5120 Hz . Transformer, Namur or optocoupler input	24 V	61
Over speed	FABA	Freq.	Frequency range from 10 to 5120 Hz . Transformer, Namur or optocoupler input	24 V	61
Synchronizer	SYND	AC 2w	Synchronization of grid and generators.	100-500V	63
	SYPD	Bus 3w.	Optional 96×96 Panel indicator to SYND	Bus 3 wire	65
Isolation amplifiers					
Multi function	AISA	DC	Programmable: 8 input and 8 output volt/mA ranges. Includes power supply	24-440V	67
Multifunction, mV input	AISB	DC	Programmable: 4 mV input and 8 volt/mA output ranges. Includes power supply	$24-440 \mathrm{~V}$	69
Multifunction, Volt input.	UISA	DC	Programmable w. 16 input volt ranges and, 8 output V/mA ranges. Incl. power supply	24-440V	71
	UISB	DC	Programmable w. 16 input volt ranges and current loop output. Incl. power supply	24-440V	71
Volt in and current loop out Current loop isolator	UIDA	DC	2 input ranges: $4.8-24 \mathrm{~V}$ and $6-30 \mathrm{~V}$ to current loop.	4-20mA	73
	AITA	DC	Current loop. 3 loops 4 to 20mA. Loop powered	4-20mA	75
	AITB	DC	Current loop. 1 loop 4 to 20 mA . Loop powered	$4-20 \mathrm{~mA}$	77
Transducers					
Current	IAMA	AC	Dual range: 1 \& 5 Aac in to 6 standard V / mA output ranges.	24-440V	79
	IAMB	AC	Dual range: 1 \& 5 Aac in to $4-20 \mathrm{~mA}$ current loop out	24-440V	79
Voltage	UAMA	AC	Dual range: 250 \& 500 Vac in to 6 standard V/mA output ranges	24-440V	79
	UAMB	AC	Dual range: 250 \& 500 Vac in to 4-20mA current loop out	24-440V	79
Frequency	FAMA	Freq.	Min. \& Max. range specified from 1 to $5000 \mathrm{~Hz} .8 \mathrm{~V} / \mathrm{mA}$ output ranges	$24-440 \mathrm{~V}$	81
Power Active	WAAA	AC Watt	1 - Phase 2 wire. Select from 19 Volt or mA unipolar or bipolar outputs	$24-440 \mathrm{~V}$	83
	WABA	AC Watt	3 -Phase 3 \& 4 wire symmetrical load.	$24-440 \mathrm{~V}$	83
	WACA	AC Watt	3 - Phase 3 wire asymmetrical load (Aron coupling)	$24-440 \mathrm{~V}$	83
	WADA	AC Watt	3 - Phase 3 \& 4 wire asymmetrical load	$24-440 \mathrm{~V}$	83
Power Reactive	WRBA	AC Var	3 - Phase 3 \& 4 wire symmetrical load	$24-440 \mathrm{~V}$	87
	WRCA	AC Var	3 - Phase 3 wire asymmetrical load (Aron coupling)	$24-440 \mathrm{~V}$	87
	WRDA	AC Var	3 - Phase 3 \& 4 wire asymmetrical load	$24-440 \mathrm{~V}$	87
			Continued ...		

	Type	Input	Function	Input or supply Range	Page
Transducers (Continued)					
Power Active	WBAA	AC Watt	1 - Phase 2 wire. Select from 19 different Volt or mA unipolar or bipolar outputs	24-440V	87
	WBBA	AC Watt	3 - Phase 3 \& 4 wire symmetrical load	$24-440 \mathrm{~V}$	87
	WBCA	AC Watt	3 - Phase 3 wire asymmetrcal load (Aron coupling)	24-440V	87
	WBDA	AC Watt	3 - Phase 3 \& 4 wire symmetrical load.	24-440V	87
Power Reactive	WSAA	AC Var	1 - Phase 2 wire. Select from 19 different Volt or mA unipolar or bipolar outputs	$24-440 \mathrm{~V}$	87
	WSBA	AC Var	3 - Phase 3 \& 4 wire symmetrical load	$24-440 \mathrm{~V}$	87
	WSCA	AC Var	3 - Phase 3 wire asymmetrical load (Aron coupling)	$24-440 \mathrm{~V}$	87
	WSDA	AC Var	3 - Phase 3 \& 4 wire asymmetrical load	$24-440 \mathrm{~V}$	87
Design of housing for 35/45/55 and $22,5 \mathrm{~mm}$ housing					91

MULTIFUNCTION

CURRENT RELAY
Type: IMCA

FEATURES

- For AC and DC current
- Balanced input for noise immunity
- Input current range from 0.5 mA to 10 A
- 12 programmable input ranges
- 4 programmable times for power up reset
- 4 programmable time ranges
- Separate adjustable ON and OFF delay
- Relay function can be inverted
- Adjustable upper or lower limit and differential
- Latch function available
- LEDs indicate the state of the input
- LEDs indicate the timing function
- LED indicates the state of the relay
- SMD technology
- 0-1 V DC control output for full scale (Only in 45 mm . housing)

Description:
The current relay is designed with a microcontroller. With programmable range, function and timing it can be programmed to cover all kinds of applications.

The monitored current is fed through an internal shunt with a voltage drop of 50 mV at full range. For extreme noise immunity the voltage is then amplified in a balanced amplifier, rectified, averaged and compared with a preset reference voltage.
AC and DC current between $0,5 \mathrm{~mA}$ and 10 A can be measured directly. By means of a current transformer or a shunt resistor the range can be extended without limits.

Application:

Level comparator used with transducers and transmitters. Over- or undercurrent monitoring of loads, batteries, generators, mains etc.

PROGRAMMABLE FEATURES
Range and relay function

Time function

Control output and 2 relays, only in 45 mm . housing.

CONNECTION DIAGRAM

Rail mounting

SPECIFICATIONS

INPUT	DC or AC current
Range	From 0.5 mA to 10 A
Input Range:	Setpoint Range
B 1 and B5	0.5-2.5mA
0.01 A	$1-5 \mathrm{~mA}$
socket type 1008	$2-10 \mathrm{~mA}$
B 1 and B4	5-25 mA
0.1 A	10-50 mA
socket type 1009	20-100 mA
B 1 and B3	$50-250 \mathrm{~mA}$
1 A	$0.1-0.5$ A
socket type 1000	0.2-1 A
B 1 and B2	0.5-2.5 A
10 A	$1-5 \mathrm{~A}$
socket type 1001	2-10 A
AC frequency range	45 to 440 Hz
Max. continuous input	$1.42 \times 1{ }_{\text {mom }}$
Input resistance	$0.1 / \mathrm{I}_{\mathrm{R}} \Omega(10 \Omega, 1 \Omega, 0.1 \Omega, 0.01 \Omega)$
Power up, set or reset	Dip switch settings. Fixed 2 sec . 5 sec . 10 sec . 20 sec .
Time range during run	Dip switch settings. Adjustable 0 - 5 sec. 0-20 sec. 0-80 sec. 0-320 sec.
Differential	Adjustable from 1 to 50% of setting
PERFORMANCE PARAMETERS TIMING	
Response time	Approx. 100 msec .
ELECTRICAL	
Temp. dependence	Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Supply dependence	Typ. ± 0.01 \% / \% DU
OUTPUT	Relay, $1 \mathrm{C} / \mathrm{O}$ or $2 \mathrm{C} / \mathrm{O}$
Contact rating	$6 \mathrm{~A}, 250 \mathrm{VAC}, 1500 \mathrm{~W}$
Mechanical life	30 Million operations
DC output	0-1 V DC (Only in 45 mm .)
SUPPLY	
$A C$ and $D C$ with isolated switchmode	18-360 VDC and 20-264 VAC
AC supply range	24 V (From 20 to 28 V)
with transformer	110 V (From 99 to 140 V)
	230 V (From 198 to 264 V)
	400 V (From 342 to 484 V)
AC frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 3 \mathrm{~W}$
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to 90% RH non-condensing
Dielectric test voltage	Input to supply 4000 VAC
	Coil to relay contacts 4000 VAC
	Pole to pole (45 mm .) 2500 VAC
Weight	0.19 kg in 35 mm . housing
	0.26 kg in 45 mm . housing
EMC directive 89/336:	EN50081-Emission
	EN50082-Immunity
Low voltage directive 73/23:	EN60255-Electrical Relays

ORDERING INFORMATION

EXAMPLE, Socket mounting 11-Pin.:
TYPE
Multifunction current relay
INPUT CURRENT RANGE
From 0,5 to 10 mA
From 5 to 100 mA
$\begin{array}{lrrr}\text { From } & 0,05 \text { to } & 1 & \text { A } \\ \text { From } & 0,5 \text { to } & 10 & \text { A }\end{array}$
SUPPLY VOLTAGE
18-360 VDC and 20-240VAC
20-28 VAC
20-28 VAC
99-140 VAC
198-264 VAC
$342-484$ VAC
ADJUSTMENT
Trimpot and dipswitch adj.

Socket mounting 11-Pin.(internal transformer)

SIZE
35 mm .
$2 \mathrm{C} / \mathrm{O}$

CODE END

Socket mounting
Input current

supply

DC HIGH CURRENT

RELAY
Type: IDRA

FEATURES

- Cost effective solution
- 4 current sensitivities: 3, 6, 10, 16 A
- Compact size
- 3 models with flying leads for high continuous current

CONNECTION DIAGRAM

Rail mounting

SPECIFICATIONS

INPUT	DC current
Input Range:	
Max. continuous current	Pull in Drop out
10 A Terminal connection	3.0 A 1.5 A
$16 \mathrm{~A} \quad 2.5 \mathrm{~mm}^{2}$ Flying leads	$6.0 \mathrm{~A} \quad 3.0 \mathrm{~A}$
$20 \mathrm{~A} \quad 4.0 \mathrm{~mm}^{2}$ Flying leads	$10 \mathrm{~A} \quad 5.0 \mathrm{~A}$
$32 \mathrm{~A} \quad 6.0 \mathrm{~mm}^{2}$ Flying leads	$16 \mathrm{~A} \quad 8.0 \mathrm{~A}$
PERFORMANCE PARAMETERS	
Pull in	+20\% -30\%
Drop out	+30\% -30\%
OUTPUT	Reed contact
Switching capacity	12 W/VA
Switching voltage	$230 \mathrm{Vac} / \mathrm{dc}$
Switching current	Max. 1.0 A
Carrying current	Max. 2.0 A
Contact resistance	100 mOhm
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to 90 \% RH non-condensing
Dielectric test voltage	Input to contact 4000 VAC
Weight	Version
	3.0A $\quad 40 \mathrm{~g}$
	$6.0 \mathrm{~A} \quad 80 \mathrm{~g}$
	$10 \mathrm{~A} \quad 100 \mathrm{~g}$
	$16 \mathrm{~A} \quad 125 \mathrm{~g}$

C

EMC directive 89/336:

Low voltage directive 73/23

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

Description:

The IDRA DC current relay is a miniaturized and cost effective solution for monitoring the presence of a DC current. The units for currents above 10 A are, in order to allow for a high continuous current, supplied with 500 mm flying leads of $2.5,4.0$ or $6.0 \mathrm{~mm}^{2}$

The current is monitored by means of a Reed Relay, and the set point is fixed.

Application:
Used as input to PLC's for over or under current surveillance of DC loads or charging currents.

ORDERING INFORMATION

EXAMPLE:
TYPE
DC current relay
SENSITIVITY (Pull in)
3.0 A
6.0 A

10 A
16 A
CONNECTIONS
Terminal connection
$2.5 \mathrm{~mm}^{2}$ Flying leads
$4.0 \mathrm{~mm}^{2}$ Flying lead
$6.0 \mathrm{~mm}^{2}$ Flying leads
ADJUSTMENT
Fixed sensitivity
HOUSING
Rail mounting
SIZE
17.5 mm

CODE
Code end
Extended code

FEATURES

- Includes a 35 mA current limit for a loop powered external sensor in order to secure against shorted sensor wires
- Includes an alarm LED for a shorted or broken sensor wire
- Adjustable differential
- 0 to 2 sec. adjustable ON and OFF delay
- LEDs indicate the state of input, fault and relay
- Extremely compact solution

CONNECTION DIAGRAM

Rail mounting

FUNCTION DIAGRAM

SPECIFICATIONS

ORDERING INFORMATION

OPTIONAL EXTRAS

TIME MODULES - type TAI, TAO and TAB
The modules cause delay on operate, delay on release and delay
on both operate and release. The delay is adjustable and can be specified up to 30 sec . On applying the supply voltage, the delay on operate will follow the power up reset period.
As standard the ILUA and ILUB are supplied with a TAB 02 timing module.

SPECIAL FACTORY ADJUST - type SFA.
The relay can be factory preadjusted according to customers specifications.
$\boxed{\boxed{\circ}}$

FEATURES

- Applications includes differential current (earth leakage) measurement with manual 30 mA fault test
- 12 programmable input ranges for over or under current
- Adjustable differential and upper or lower limit
- 20 mA output signal at max. range for current monitoring
- Separate adjustable ON and OFF delay
- 4 programmable time ranges for ON and OFF delay
- 4 programmable Power Up delays
- Relay function can be inverted
- Relay can be set to latch IN or latch OUT.
- Electrical and manual reset of latch
- LEDs indicate the state of input, timing and relay

Description:
The current relay is designed to cover all possible AC current monitoring and control applications - including differential current measuring (earth leakage)-in the range from 5 mAto 100A. Higher sensitivity can be achieved by pulling the current carrying wire multiple times through the relay. The wide range, 4 decades, are divided into 12 sub ranges for easy adjusting. For an external monitoring of the actual input, there is a 20 mA output signal related to the max. of the set range.

The differential is adjustable from 1 to 50% of the set tripping current. By means of DIP switches, the actual relay function can be set to detect over or under current with fail safe relay function. The relay function can be inversed and set to latch in or out with manual or electrical reset. Furthermore several ranges of Power Up delay, as well as adjustable ON and OFF delay makes this relay the ultimate choice for $A C$ current measuring.

Used as an earth leakage relay - with up to 2 wires of 6 mm 2 (63A) through the relay - the setting of a 30 mA limit can simply be done by pressing the test button - for a 30 mA fault current through the CT - and adjusting the trip point to drop out.

Application:

Differential (earth leakage)AC current monitoring. Level comparator used with transducers and transmitters. Over- or undercurrent surveillance of al kinds of loads, heaters, motors, generators, mains current etc.

PROGRAMMABLE FEATURES
Range and relay function

Time function

DELAY IN SEC.

INPUT
Input Range:
5 to 100 mA

50 to 1000 mA

0,5 to 10 A

5,0 to 100 A

AC frequency range Max. continuous input Input resistance Power up, set or reset

Time range during run

Differential
PERFORMANCE PARAMETERS TIMING
Response time
ELECTRICAL
Temp. dependence
Supply dependence

OUTPUT
Contact rating
Mechanical life DC output

SUPPLY
DC supply range

AC supply range with transformer

AC frequency range Power consumption

GENERAL
Temperature range
Humidity
Dielectric test voltage

Weight
AC current from 5 mA to 100A
Setpoint Range

5	-	25	mA
10	-	50	mA
20	-	100	mA
50	-	250	mA
100	-500	mA	
200	-1000	mA	
0,5	-	2,5	A
1	-	5	A
2	-10	A	
5.0	-	25	A
10	-50	A	
20	-100	A	

Limited by square of current carying wire. Resistance of wire through the unit
Dip switch settings. Fixed 2 sec
5 sec
10 sec
20 sec .

0 - 5 sec .
$0-20 \mathrm{sec}$.
0 - 80 sec .
$0-320$ sec.
Adjustable from 1 to 50% of setting

Approx. 100 msec .
Typ. ± 0.02 \% / ${ }^{\circ} \mathrm{C}$
Typ. ± 0.01 \% / \% DU

Relay, $2 \mathrm{C} / \mathrm{O}$
6 A, 250 VAC , 1500 W
30 Million operations
0 to 20 mA at max. setpoint range

AC or DC voltage
24 V (From 20 to 32 V)
$24 \mathrm{~V}($ From 20 to 28 V)
$110 \mathrm{~V}($ From 85
$230 \mathrm{to}($ From 187
to 264 V$)$
400 V (From 323
460 to 484 V (From 374 to 506 V)

4 VA W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90% RH non-condensing
Input to supply 4000 VAC $\begin{array}{ll}\text { Coil to relay contacts } & 4000 \text { VAC } \\ \text { Pole to pole } & 2500 \text { VAC }\end{array}$ 0.19 kg in 35 mm . housing

EXAMPLE
TYPE
Multifunction current relay
SUPPLY VOLTAGE
20 - 32 VDC
20 - 28 VAC
85-127 VAC
187 - 264 VAC
323 - 457 VAC
$374-506$ VAC
ADJUSTMENT
Trimpot and dipswitch adj.
HOUSING
Rail mounting.(internal transformer) Socket, 11 Pin

SIZE
35 mm .

CODE
Code end
Extended code

FUNCTION DIAGRAM

Overcurrent sensing

Undercurrent sensing

c

EMC directive 89/336

Low voltage directive 73/23

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relay

FEATURES

* Cost effective solution
* Minimize energy consumption
* Minimize environmental noise
* Compact size
* Direct powered from the starter battery

CONNECTION DIAGRAM

Rail mounting

SPECIFICATIONS

INPUT	AC current
Input Range	$45-400 \mathrm{~Hz}$
PERFORMANCE PARAMETERS	
Pull in	
delay	$<50 \mathrm{mAAC}$
Temp. dependence	$0-60 \mathrm{sec} .-25 \%-+50 \%$
Supply dependence	Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Typ. $\pm 0.01 \% / \% \mathrm{U}$	

AC CURRENT DETECTING RELAY WITH DELAYED DROP OUT
 Type: IADA

Description:
The IADA AC current relay is a miniaturized and cost effective solution for monitoring the presence of an AC current. The unit detects current from 50 mA and above and accepts continuous currents only limited by the cable size through the CT in the front.

Operation:
When powered from either 12 or 24 V DC the relay will pull when the wire through the CT conducts an AC current of more than 50 mA . When the current drops down below 40 mA the relay will drop out after the set delay of up to 60 sec . has expired.

Application:
Automatic idle and run control of small petrol or diesel motor powered generator sets. When the motor is idling, the output voltage will only be a fraction of the nominal voltage and not able to feed the connected units. The generator set will run with a low power consumption and low noise. But as soon as a connected load is switched on, a small load current will be detected by the IADA and the motor will be switched from idling to run in order to supply the power for the load. In order to minimize the number of switches the IADA comes with an adjustable drop out delay. When the load is disconnected the build-in timer in the IADA starts to count down and after the set time the relay will drop out and the motor go back to the idle condition.

ORDERING INFORMATION
EXAMPLE:
TYPE
AC current relay
SENSITIVITY (Pull in)
max 100 mA

ADJUSTMENT
Fixed sensitivity
HOUSING
Rail mounting with Current transformer
SIZE
17.5 mm

CODE
Code end
Extended code

Description:

The differential DC current relay is designed to monitor IT systems for insulation deterioration. The DDCA is able to selectively indicate faults in branched systems. In addition to this it shows if the fault is related to the positive or the negative wire for easy maintenance. Used with only one wire through the sensing core, it can monitor a circuit for connectivity and function. If the DC current drops below the set value, the relay will trip. This is another key feature as the DDCA allows, up to the cable capacity, AC and DCAmps to flow under normal conditions without having the usual voltage drop and heat from a shunt resistor.

Operation:

Set the DIP switches (123) to the requested sensitivity, latching relay (5) to On or Off and the relay (6) to Normal (fail safe) or Inverse function. When the power is connected to A1 and A2, and with no differential current through the sensing coil, the green LEDs for Differential and Relay ON (normal function) will be on. When a differential current above the set limit is detected, one of the red Differential LED's will be switched on, showing the polarity of the cable leaking to ground. (For leak currents above 15A both red Differential LEDs will be switched on indicating that the DDCA is saturated and cannot detect which cable is leaking). When high current is detected, the OFF delay starts to elapse, indicated by a green LED, and the relay will drop out when the set time has expired. If the latch function is selected the relay will stay de-energized (normal function) and the red Latch LED will be on until the Reset button is activated. If the latch function is not active and the differential current drops below the set level, the green Differential LED will be switched on and the ON delay starts to elapse, indicated by a green LED. The relay will pull in (normal function) when the set time has expired.

Test and Reset function:

The Test switch activates a real functional test as it conducts a DC current through a separate winding on the sensing core. The Reset switch will while activated release the latch function.

Application:

Selective DC earth leakage detection in single and branched systems. The DDCA is the solution for pure DC installations used in UPS and control systems for chemical, petrochemical, mining industry as well as seagoing vessels. The DDCA is also ideal for measuring the DC component in AC installations including loads with rectifiers e.g. in variable speed drives, causing the AC monitors to malfunction.

PROGRAMMABLE FEATURES

SPECIFICATIONS

INPUT	DC Current. No specified limitation
Set points selectable by dipswitch	5, 10, 20, 50, 100, 200mA
Differential	Typical 2\%
Transformer Diameter	$\varnothing 14 \mathrm{~mm}$
	Ø 29mm
PERFORMANCE PARAMETERS	
TIMING	
Response time	Typical <200msec.
Time range during run	Separate On and Off delay
	0-10 sec. adjustable
ELECTRICAL	
Current direction indication	Up to 15 Amp
Precision	Set point $\pm 2 \%$
	Analog output class 2
Temp. dependence	Typ. ± 0.02 \% / ${ }^{\circ} \mathrm{C}$
OUTPUT	
RELAY	$2 \mathrm{C} / \mathrm{O}, \mathrm{AgNi} / \mathrm{Au}$
Contact rating	$6 \mathrm{~A}, 250 \mathrm{VAC}, 1500 \mathrm{~W}$
	See figure for DC rating
Mechanical life	30 million operations
ANALOG INDICATION	
Current	12mA @ Input (fault)= 0mA
	$12 \pm 8 \mathrm{~mA} @$ input $= \pm$ set point current
SUPPLY	DC voltage
Supply range	18-340V
Power consumption	Max 3 W
GENERAL	
Precaution	The DDCA is screened with μ metal for high immunity. If the analog output in the highly sensitive ranges is used, precautions should be taken against permanent magnetic fields close to the DDCA as they can influence on the accuracy. In the sensitive ranges the wires should be kept close and in the center of the core.
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to 90% RH non-condensing
Dieletric test voltage	Coil to relay contacts 4000 VAC
	Pole to pole 2500 VAC
Weight	Size 3: 0.17 kg . Size 5: 0.23 kg

C
Directive 2002/95/EC of EMC directive 89/336:

Low voltage directive 73/23:

ORDERING INFORMATION

Main Unit DDCA		DDCA	1834	D A 5 C	
TYPE					
Differential DC current control relay	DDCA 1				
SUPPLY VOLTAGE					
18V-340 VDC	1834	-			
ADJUSTMENT					
Dipswitch adj.	D	-			
HOUSING					
Rail mounting	A				
SIZE					
$35 \mathrm{~mm}, 14 \mathrm{~mm}$ throughput	3				
$55 \mathrm{~mm}, 29 \mathrm{~mm}$ throughput	5				
CODE END					

RELAY CONTACTS

Examples for $U_{b}=48 \mathrm{~V}, \Delta \mathrm{I}_{\text {set }}=5 \mathrm{~mA}$
$R_{1}=\operatorname{Max} \frac{48}{4 \times 0,005}=$ Max. 2400Ω
$W=$ Min. $0,4 \frac{48^{2}}{2400}=$ Min. 0,384 Watt
$R_{2}=\operatorname{Max} \frac{48}{2 \times 0,005}=\operatorname{Max} .4800 \Omega$
$W=$ Min. 1,6 $\quad \frac{48^{2}}{4800}=$ Min. 0,768 Watt

* The calculation of the resistor is based on a safety factor of 2 corresponding to a detection of a short from one pole to ground down to half battery voltage. A resistor selected according to the maximum resistor value as calculated above will limit the leak current to 2 times $\Delta \mathrm{I}$ in case of direct short to ground. If it is a branched circuit with distributed "acceptable" leaks, it is recommended to use a lower value of the resistor
** The calculation of the resistor size is based on a safety factor of 1,6 corresponding to an acceptable increase in battery voltage of up to 26%.

Description:
The differential DC current relay is designed to monitor IT systems for insulation deterioration. The DDCB is able to selectively indicate faults in branched systems. In addition to this it shows if the fault is related to the positive or the negative wire for easy maintenance. Used with only one wire through the sensing core, the DDCB can monitor a circuit for connectivity and under current. If the $D C$ current drops below the set value, the relay will trip. This is another key feature as the DDCB allows, up to the cable capacity, AC and DCAmps to flow under normal conditions without having the usual voltage drop and heat from a shunt resistor.

Operation:

Set the DIP switches (123) to the requested sensitivity, latching relay (5) to On or Off and the relay (6) to Normal (fail safe) or Inverse function. When the power is connected to A1 and A2, and with no differential current through the sensing coil, the green LEDs for Differential and Relay ON (normal function) will be on. When a differential current above the set limit is detected, one of the red Differential LED's will be switched on, showing the polarity of the cable leaking to ground. (For leak currents above 15A both red Differential LEDs will be switched on indicating that the DDCB is saturated and cannot detect which cable is leaking). When high current is detected, the OFF delay starts to elapse, indicated by a green LED, and the relay will drop out when the set time has expired. If the latch function is selected the relay will stay de-energized (normal function) and the red Latch LED will be on until the Reset button is activated. If the latch function is not active and the differential current drops below the set level, the green Differential LED will be switched on and the ON delay starts to elapse, indicated by a green LED. The relay will pull in (normal function) when the set time has expired.

Test and Reset function:

The Test switch activates a real functional test as it conducts a DC current through a separate winding on the sensing core. The Reset switch will, when activated, release the latch function.

Application:

Selective DC earth leakage detection in single and branched systems. The DDCB is the solution for pure DC installations used in UPS and control systems for chemical, petrochemical, mining industry as well as in seagoing vessels. The DDCB is also ideal for measuring the DC component in AC installations including loads with rectifiers e.g. in variable speed drives, causing the AC monitors to malfunction.

PROGRAMMABLE FEATURES

SPECIFICATIONS

INPUT
Set points selectable by dipswitch

Differential
Transformer Diameter

PERFORMANCE PARAMETERS

TIMING
Response time
Time range during run
ELECTRICAL
Current direction indication
Precision
Temp. dependence

OUTPUT
RELAY
Contact rating
Mechanical life
ANALOG INDICATION
Current

SUPPLY
Supply range
Power consumption

GENERAL
Precaution

Temperature range
Humidity
Dieletric test voltage

Weight

C

Directive 2002/95/EC of EMC directive 89/336:

Low voltage directive 73/23

DC Current No specified limitation $5,10,20,50,100,200 \mathrm{~mA}$, or $7.5,15,30,75,150,300 \mathrm{~mA}$ Special version max. range 2.0A) Typical 2\%
Inner $\varnothing 50 \mathrm{~mm}$, Outer $\varnothing 85 \mathrm{~mm}$ Inner Ø 90 mm , Outer Ø130 mm

Typical <200msec.
Separate On and Off delay - 10 sec. adjustable

Up to 15 Amp
Set point $\pm 2 \%$
Analog output class 2
Typ. ± 0.02 \% / ${ }^{\circ} \mathrm{C}$
$2 \mathrm{C} / \mathrm{O}, \mathrm{AgNi} / \mathrm{Au}$
6 A, 250 VAC, 1500 W See figure for DC rating 30 million operations
$12 \mathrm{~mA} @$ Input (fault)= 0mA $12 \pm 8 \mathrm{~mA} @$ input $= \pm$ set point current

DC voltage

18-340V
Max 3 W

ORDERING INFORMATION

Main Unit DDCB
TYPE
Differential DC current control relay

SETPOINTS

5, 10, 20, 50, 100, 200mA
$7.5,15,30,75,150,300 \mathrm{~mA}$
SUPPLY VOLTAGE
18 V - 340 VDC
ADJUSTMENT
Dipswitch adj.
HOUSING
Rail mounting
SIZE
55 mm
CODE END

EXTERNAL Coil DDCC
External Coil DDCC

Coil Size, ID mm (Inner/outer diam.)

FUNCTION DIAGRAM

The DDCC is screened with μ metal for high immunity. If the analog output in the highly sensitive ranges is used, precautions should be taken against permanent magnetic fields close to the DDCC as they can influence the accuracy. In the sensitive ranges the wires should be kept close and in the center of the core.
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90 \% RH non-condensing
Coil to relay contacts 4000 V Pole to pole 2500 VAC Size 3: 0.17 kg . Size 5: 0.23 kg

International Standards

RoHS
EN50081-Emission
EN50082 - Immunity
EN60255 - Electrical Relays

Calculations of grounding resistors for not grounded batteries

$$
\begin{array}{ll}
\mathrm{R}_{1}{ }^{*}=\operatorname{Max} \frac{\mathrm{U}_{\mathrm{b}}}{4 \Delta \mathrm{I}_{\text {set }}} \Omega & \mathrm{R}_{1}=\operatorname{Max} \frac{48}{4 \times 0,005}=\operatorname{Max} .2400 \Omega \\
\mathrm{~W}^{* *}=\text { Min. } 0,4 \frac{\mathrm{U}_{\mathrm{b}}^{2}}{\mathrm{R}_{1}} \text { Watt } & \mathrm{W}=\text { Min. } 0,4 \\
\frac{48^{2}}{2400}=\text { Min. } 0,384 \mathrm{Watt}
\end{array}
$$

* The calculation of the resistor is based on a safety factor of 2 corresponding to a detection of a short from one pole to ground down to half battery voltage.
A resistor selected according to the maximum resistor value as calculated above will limit the leak current to 2 times $\Delta \mathrm{I}$ in case of direct short to ground.
If it is a branched circuit with distributed "acceptable" leaks, it is recommended to use a lower value of the resistor.
** The calculation of the resistor size is based on a safety factor of 1,6 corresponding to an acceptable increase in battery voltage of up to 26%.

EARTH LEAKAGE MONITOR FOR DC UNEARTHED IT SYSTEMS

Type: DDEA

FEATURES

- Monitors Insulation deterioration and faults and gives an early warning if a leak current exceeds a preset level
- Programmable leak current limit from 0.2 to 30 mA
- Universal unit for a wide range of distribution system voltages U_{n} from 20 to 500 V .
- Self-supplied from the distribution system
- Time delay - on and off - individually adjustable
- Relay function $2 \times 1 \mathrm{C} / \mathrm{O}$ (leak from + or -) or 1x2C/O
- The relays work in Fail Safe mode
- Latch function can be selected
- 3-digit display shows actual current leak
- LEDs indicate the status of the relay, latch and timing function

FUNCTION DIAGRAM

Description:

The DC earth leakage relay is designed to monitor unearthed DC IT systems for insulation deterioration or faults. The DDEA, that is power supplied from the system to be monitored, is connected to earth through an active current limited circuitry, trying to keep the earth voltage at half the system voltage. If there is a leak to ground from one of the supply lines the DDEA will compensate in order to keep the earth voltage at half the supply voltage. When the compensation current rises to a higher level than the set point the relay will switch, and the DDEA will let the earth float with the limited compensation current still running. This ensures that the special features of an unearthed system are still available while the fault can be found and repaired. The internal relays can be set to work in parallel for a fault or individually for faults in the positive or the negative line. In the unlikely case that there is a balanced leak from both the positive and the negative supply line it will not be detected by the DDEA.

Operation:

In order to minimize the size of the DDEA the unit is powered by 3 independent switch mode supplies. Two supplies are used to either source or drain current from the earth terminal and a third supply powers the electronics. The DDEA is with leak currents below 10 mA either sourcing or draining with a DC current. At higher leak current, high supply voltage and high ambient temperature the DDEA automatically changes mode to a safe pulse pause mode where the pulses (leak and measuring current) are 600 msec and the pause up to 20 sec . or long enough to keep the temperature in the box below $65^{\circ} \mathrm{C}$.
If LATCH is selected the relays can be reengaged - if the leak current is under the set point - by pressing the S/R button on the front.

Application:

Unearthed systems can function even with a direct short from any point in the wiring to ground, but another short or leak from another point in the system can be fatal. Either direct with heavy currents, overheating or indirect through component malfunction. The DDEA solves the problem by monitoring the circuit and giving an early warning as soon as it senses a leak current greater than the set value. Securing the ground level at half system voltage reduces at the same time personal risks for electric shock.

CONNECTION DIAGRAM

Please note
If the two relay contacts are in "Fault" position and all LED's are red and the display shows "FFF", then the DDEA is defect and must be replaced.

SPECIFICATIONS

INPUT

To Earth connector

Set points
Differential
Voltage limit

PERFORMANCE PARAMETERS
TIMING
Response time

Time range during run

ELECTRICAL
Accuracy
Temp. dependence

OUTPUT

RELAY
Contact rating
Mechanical life
ANALOG INDICATION
Display

SUPPLY
Supply range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage
Open contact circuit
Weight
C

International Standards Product safety
EMC

DC Current up to set point then a floating DC Voltage
Programmable from 0,2 to 30 mA
Programmable from 0,1 to set point $-0,1 \mathrm{~mA}$ Voltage on Earth connector FE must be limited to be within system voltage

Typical <200 msec. Below 10 mA and not pulsed earth leakage current. At higher current, voltage and ambient temperatures dependent on pause time. Max. 20 sec. Programmable separate On and Off delay $0-99,9 \mathrm{sec}$. MCU controlled.

Set point $\pm 2 \%$ within system voltage Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$

2 relays x $1 \mathrm{C} / \mathrm{O}, \mathrm{AgNi} / \mathrm{Au}$
6 A, 250 VAC, 1500 W
See figure for DC rating
20 million operations

3 digit LED
Current resolution 0,1 mA
Time resolution $0,1 \mathrm{sec}$.

DC voltage
$20-500 \mathrm{~V} \pm 10 \%$
Max 3.5 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient Up to 90% RH non-condensing DC circuit to contact $4000 \mathrm{~V}_{\text {rms }}$ Contact to contact 2500 Vrms 1000 Vrms
0.17 kg .

EN 60255-27: 2006
EN 50263: 2000
EN 60255-22 Immunity
EN 61000-25 Emission

EXAMPLE:

TYPE

Differential DC current control relay
SUPPLY VOLTAGE
20-500 Vdc

ADJUSTMENT

Programmed
HOUSING
Rail mounting

SIZE

45 mm .
CODE END

DDEA Set-up parameters

To enter Setup Menu pres S/R button for app. 5 sec.
If no activity on the buttons for 50 sec., then the setup will end without saving data. To return to factory default see below

Step 1: \quad Set Trip to over current. Relay ON to OFF
LEDs: "Leakage to +" and "Leakage to -" are blinking Red
Set trip value from 0,1 to $30,0 \mathrm{~mA}$
Press Up or Down keys to change trip value and press S / R for next Setup menu
Step 2: \quad Set Return to acceptable current. Relay Off to ON
LEDs: "Leakage to +" and "Leakage to -" are blinking Green
Set return value 0,1 to "trip value" $x, x \mathrm{~mA}$
Press Up or Down keys to change trip value and press S/R for next Setup menu
Step 3: Set Delay time from ON to OFF
LEDs: "Relay Leakage to +" and Relay Leakage to -" are blinking Red
Set OFF time delay from 0,0 to 99,9 sec.
Press Up or Down keys to change trip value and press S/R for next Setup menu
Step 4: Set Delay time from OFF to ON
LEDs: "Relay leakage to +" and "Relay leakage to -" are blinking Green
Set ON delay time from 0,0 to $99,9 \mathrm{sec}$.
Press Up or Down keys to change trip value and press S / R for next Setup menu
Step 5: Set Latch OFF (0) or ON (1)
If latch OFF all 4 LEDs are Green
If latch ON all 4 LEDs are Red
Press Up or Down keys to change latch setting and press S/R for next Setup menu

Step 6: \quad Set Relay Function
Function 1: Individual functioning C/O contact for leakage to + and for leakage
to -. Relay LEDs blinking Red and Green out of phase
Function 2: 2 parallel functioning C/O contacts for leakage to + or leakage to Relay LEDs are blinking Red and Green in phase
Press Up or Down keys to change the relay function and press S/R to Store Data and Exit setup

To return to factory default setup values press "S/R" and "UP"
buttons simultaneously for app. 5 sec.

Over current trip:	10,0	mA
Return trip:	9,8	mA
Delay time ON to OFF:	2,0	sec.
Delay time OFF to ON:	2,0	sec.
Latch:	OFF	(0)
Relay function:	Function 1	(Individual)

EARTH LEAKAGE MONITOR ASYM \& SYM LEAKAGE FOR DC UNEARTHED IT SYSTEMS

FEATURES

- Monitors Insulation deterioration and faults and gives an early warning if a leak current exceeds a preset level
- Reacts on both symmetric and asymmetric leakages
- Programmable leak current limit from 0.2 to $\mathbf{3 0} \mathrm{mA}$
- Universal unit for a wide range of distribution system voltages Un from 20 to 500 V .
- Self-supplied from the distribution system
- Time delay - on and off - individually adjustable
- Relay function $2 \times 1 \mathrm{C} / 0$ (leak from + or -) or $1 \times 2 \mathrm{C} / 0$
- The relays work in Fail Safe mode
- Latch function can be selected
- 3-digit display shows actual current leak
- LEDs indicate the status of the relay, latch and timing function

FUNCTION DIAGRAM

Description:

The DC earth leakage relay is designed to monitor unearthed DC IT systems for insulation deterioration or faults. The DDEB, that is power supplied from the system to be monitored, is connected to earth through an active current limited circuitry, trying to keep the earth voltage at half the system voltage. If there is a leak to ground from one or both of the supply lines the DDEB will compensate in order to keep the earth voltage at half the supply voltage. When the compensation current rises to a higher level than the set point the relay will switch, and the DDEB will let the earth float with the limited compensation current still running. This ensures that the special features of an unearthed system are still available while the fault can be found and repaired. The internal relays can be set to work in parallel for a fault or individually for faults in the positive or the negative line.

Operation:

In order to minimize the size of the DDEB the unit is powered by 3 independent switch mode supplies. Two supplies are used to either source or drain current from the earth terminal and a third supply powers the electronics. The DDEB is with leak currents below 10 mA either sourcing or draining with a DC current. At higher leak current, high supply voltage and high ambient temperature the DDEB automatically changes mode to a safe pulse pause mode where the pulses (leak and measuring current) are 600 msec and the pause up to 20 sec . or long enough to keep the temperature in the box below $65^{\circ} \mathrm{C}$.
If LATCH is selected the relays can be reengaged - if the leak current is under the set point - by pressing the S/R button on the front.

Application:

Unearthed systems can function even with a direct short from any point in the wiring to ground, but another short or leak from another point in the system can be fatal. Either direct with heavy currents, overheating or indirect through component malfunction. The DDEB solves the problem by monitoring the circuit and giving an early warning as soon as it senses a leak current greater than the set value. Securing the ground level at half system voltage reduces at the same time personal risks for electric shock.

CONNECTION DIAGRAM

Please note

If the two relay contacts are in "Fault" position and all LED's are red and the display shows "FFF", then the DDEB is defect and must be replaced.

SPECIFICATIONS

INPUT
To Earth connector

Set points
Differential
Voltage limit

PERFORMANCE PARAMETERS
TIMING
Response time

Time range during run

ELECTRICAL
Accuracy
Temp. dependence

OUTPUT

RELAY
Contact rating
Mechanical life
ANALOG INDICATION
Display

SUPPLY
Supply range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage
Open contact circuit
Weight
(ϵ

International Standards
EMC

EN 60255-27: 2006
EN 50263: 2000
EN 60255-22 Immunity EN 61000-25 Emission

ORDERING INFORMATION

EXAMPLE:

TYPE

Differential DC current control relay
SUPPLY VOLTAGE
20-500 Vdc

ADJUSTMENT

Programmed
HOUSING
Rail mounting

SIZE

45 mm .
CODE END

Set point $\pm 2 \%$ within system voltage Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$

2 relays x $1 \mathrm{C} / \mathrm{O}, \mathrm{AgNi} / \mathrm{Au}$
6 A, 250 VAC, 1500 W
See figure for DC rating
20 million operations

3 digit LED
Current resolution $0,1 \mathrm{~mA}$
Time resolution $0,1 \mathrm{sec}$.
DC voltage
$20-500 \mathrm{~V} \pm 10 \%$
Max 3.5 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient Up to 90% RH non-condensing DC circuit to contact $4000 \mathrm{~V}_{\text {rms }}$ Contact to contact 2500 Vrms 1000 Vrms
0.17 kg .

Setup procedure for the DDEB

To enter Setup Menu pres S/R button for app. 5sec.
If no activity on the buttons for 50 sec., then the setup will end without saving data. To return to factory default see below

Choose function first :

Function 1.: Asym \& Sym LEDs: "Leakage to +" and "Leakage to -" are blinking Red \& Green In phase Function 2.: Asym + Sym LEDs: "Leakage to +" and "Leakage to -" are blinking Red \& Green out of phase

Fuction 1.: Different values for Asym and Sym
Step 1: Set Trip to Asym over current. Relay A ON to OFF LEDs: "Asym +" and "Relay A" are blinking Red Set trip value from 0,1 to $30,0 \mathrm{~mA}$
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 2: Set Return to acceptable Asym current. A Relay Off to ON
LEDs: "Asym +" and "Relay A" are blinking Green
Set return value 0,1 to "trip value" x,x mA
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 3: Set Delay time from ON to OFF Relay A
LEDs: "Relay A" are blinking Red
Set OFF time delay from 0,0 to 99,9 sec.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 4: Set Delay time from OFF to ON Relay A
LEDs: "Relay A" are blinking Green
Set ON delay time from 0,0 to $99,9 \mathrm{sec}$.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 5: Set Latch OFF (0) or ON (1) Relay A
If latch OFF all 4 LEDs are Green
If latch ON all 4 LEDs are Red
Press Up or Down keys to change latch setting and press S/R for next Setup menu

Step 6: Set Trip to Sym over current. Relay B ON to OFF
LEDs: "Asym +" and "Asym -" and "Relay B" are blinking Red
Set trip value from 0,1 to $30,0 \mathrm{~mA}$
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 7: Set Return to acceptable Sym current. Relay B Off to ON LEDs: "Asym +" and "Asym -" and "Relay B are blinking Green Set return value 0,1 to "trip value" x, x mA
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 8: Set Delay time from ON to OFF Relay B
LEDs: "Relay B" are blinking Red
Set OFF time delay from 0,0 to 99,9 sec.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 9: Set Delay time from OFF to ON Relay B
LEDs: "Relay B" are blinking Green
Set ON delay time from 0,0 to $99,9 \mathrm{sec}$.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 10: Set Latch OFF (0) or ON (1) Relay B
If latch OFF all 4 LEDs are Green
If latch ON all 4 LEDs are Red
Press Up or Down keys to change latch setting and press S/R for next Setup menu

Function 2.: Same value for Asym + Sym
Step 1: Set Trip to over current. Relay A\&B ON to OFF
LEDs: "Asym +" and "Asym -" are blinking Red out of phase Set trip value from 0,1 to $30,0 \mathrm{~mA}$
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 2: Set Return to acceptable current. Relay A\&B Off to ON
LEDs: "Asym +" and "Asym -" are blinking Green out of phase Set return value 0,1 to "trip value" x, x mA
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 3: Set Delay time from ON to OFF Relay A\&B
LEDs: "Relay A" and Relay B" are blinking Red
Set OFF time delay from 0,0 to $99,9 \mathrm{sec}$.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 4: Set Delay time from OFF to ON Relay A\&B
LEDs: "Relay A" and "Relay B" are blinking Green
Set ON delay time from 0,0 to $99,9 \mathrm{sec}$.
Press Up or Down keys to change trip value and press S/R for next Setup menu

Step 5: Set Latch OFF (0) or ON (1) Relay A\&B
If latch OFF all 4 LEDs are Green
If latch ON all 4 LEDs are Red
Press Up or Down keys to change latch setting and press S/R for next Setup menu

To return to factory default setup values press

"S/R" and "UP" buttons simultaneously for app. 5 sec.

Function 1:	Sym \& Asym
Asym Over current trip:	$10,0 \mathrm{~mA}$
Asym Return trip:	$9,8 \mathrm{~mA}$
Relay A Delay time ON to OFF:	$2,0 \mathrm{sec}$.
Relay A Delay time OFF to ON:	2,0 sec.
Relay A Latch:	...OFF

MULTIFUNCTION

VOLTAGE RELAY
Type: UMCA

FEATURES

- For AC and DC voltage
- Balanced input for noise immunity
- Input voltage range from 50 mV to 500 V
- 11 programmable input ranges
- 4 programmable times for power up reset
- 4 programmable time ranges
- Separate adjustable ON and OFF delay
- Relay function can be inverted
- Adjustable upper or lower limit and differential
- Latch function available
- LEDs indicate the state of the input
- LEDs indicate the timing function
- LED indicates the state of the relay
- SMD - technic
- 0-1 V DC control output for full scale (Only in 45 mm . housing)

Description:
The voltage relay is designed with a microcontroller. With programmable range, function and timing it can be programmed to cover a wide range of applications.

The voltage to be monitored is fed into a resistive divider and, for extreme noise immunity, amplified in a balanced amplifier, rectified, averaged, and compared with a preset reference voltage.

AC and DC voltages between 50 mV and 500 V can be measured directly. By means of a voltage transformer or a resistive divider the range can be extended without limits.

For applications in DC systems a special feature of the balanced amplifier permits voltages against the negative supply line to be measured directly without DC separation between input and supply.

Application:

Level comparator used with transducers and transmitters. Over- or undervoltage monitoring of, loads, batteries, generators, mains etc.

PROGRAMMABLE FEATURES
Range and relay function

Time function

DELAY IN SEC

INPUT	DC or AC voltage
Range	From 50 mV to 500 V
Input Range	Setpoint Range
1 V	0.05- 0.25 V
	0.1-0.5 V
	0.2-1 V
10 V	0.5-2.5 V
	$1-5 \mathrm{~V}$
	$2-10 \mathrm{~V}$
100 V	5-25 V
	10-50 V
	20-100 V
1000 V	50-250 V
	100-500 V
Max. continuous input	500 V r.m.s.
Input resistance	$2 \mathrm{M} \Omega$
AC frequency range	45 to 440 Hz
Power up, set or reset	Dip switch settings. Fixed 2 sec .
	5 sec .
	10 sec .
	20 sec .

Time range during run Dip switch settings. Adjustable
0 - 5 sec .
0-20 sec
0-80 sec
0-320 sec.

Differential
Adjustable from 1 to 50% of setting

PERFORMANCE PARAMETERS
TIMING
Response time
ELECTRICAL
Temp. dependence
Supply dependence

OUTPUT
Contact rating
Mechanical life
DC output

SUPPLY

AC and DC	18 to 360 VDC and 20 to 264 VAC
with isolated switchmode supply	
AC supply range	24 V (From 20 to 28 V)
with transformer	110 V (From 99 to 140 V)
	230 V (From 198 to 264 V)
	400 V (From 342 to 484 V)
AC frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$

GENERAL
Temperature range
Humidity
Dielectric test voltage

Weight

EMC directive 89/336:
Low voltage directive 73/23:

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

Approx. 100 msec
Typ. ± 0.02 \% / ${ }^{\circ} \mathrm{C}$
Typ. ± 0.01 \% / \% DU

Relay, 1 or $2 \mathrm{C} / \mathrm{O}$
6 A, 250 VAC , 1500 W
30 Million operations
$0-1$ V DC (Only in 45 mm .)

18 to 360 VDC and 20 to 264 VAC

24 V (From 20 to 28 V)
110 V (From 99 to 140 V) 230 V (From 198 to 264 V)

45 to 440 Hz
$4 \mathrm{VA}, 2 \mathrm{~W}$
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90 \% RH non-condensing Input to supply Coil to relay contacts Pole to pole (45 mm .) 0.19 kg in 35 mm . housing 0.26 kg in 45 mm . housing

ORDERING INFORMATION

FUNCTION DIAGRAM

Trip over

Trip under

Socket mounting Input Voltage

MAINS VOLTAGE MONITORING RELAY

Type：UAWA

FEATURES

－Separate adjustment for upper and lower limit
－Separate dipswitch setting for upper and lower limit function
－LED indicates the state of the input
－LED indicates the state of relay
－LEDs indicate the timing function
－Time delay separate adjustable

FUNCTION DIAGRAM

CONNECTION DIAGRAM

Rail mounting

Description：
The voltage relays are designed for applications where a voltage needs to be monitored for deviations from a nominal value U_{N} ． UAWA are combined over－and under voltage relays（window dis－ criminator relays）．

The relay can by means of a dipswitch be set to work as either an under voltage relay or as an over voltage relay only．

Operation：

When the supply voltage is applied，the－power up reset－period begins．If the nominal voltage is applied to the input，the internal relay pulls in the end of the reset period．
If the input voltage exceeds the adjusted upper or lower limit the relay drops out．

If the input voltage comes between the lower limit plus the differential and the upper limit minus the differential，the relay pulls in．
The differential is fixed 2% of the nominal input voltage（the center voltage of the window）．

As under voltage relay only，the relay remains energized for input voltages exceeding the upper limit．

As over voltage relay only，the relay remains energized for input voltage under the lower range limit．

Application：

To monitor mains－and generator voltages in emergency power sys－ tems．To protect electrical and electronic equipment from damage because of over－or under voltage．On special request，the relay can be modified to monitor the value of any voltage，e．g．from sensors and transmitters．

PROGRAMMABLE FEATURES

	VOLTAGE SETTING				ACTUATOR ■
$\begin{aligned} & \text { TYPE } \\ & \text { 110 } \end{aligned}$	$\underset{230 \mathrm{~V}}{\mathrm{TYPE}}$	$\begin{aligned} & \text { TYPE } \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { TYPE } \\ & 460 \mathrm{~V} \end{aligned}$		FUNCTION
	220 V	380 V	\％V 日		日
110	230 V	400 V	440 v －		－Lowerlimit
115 V	240 V	415 V	480 v 回		［ UPPER LII

Socket mounting

SPECIFICATIONS

InPut	
Phase to phase voltage	Type B110: 100, 110 and 115
Selectable by dipswitch	Type B230: 220, 230 and 240
	Type B400: 380, 400 and 415
	Type B460: 440, 460 and 480
Adjustable range	0 ± 20 \%
Differential	2% of $U_{\text {N }}$
PERFORMANCE PARAMETERS	
TIMING	
Time range during run	Separate On and Off delay
	0-10 sec. adjustable
Response time	Approx. 200 msec .
ELECTRICAL	
Temp. dependency	Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Supply dependency	Typ. ± 0.01 \% / \% ΔU
OUTPUT	Relay, 2 C/O
Contact rating	$6 \mathrm{~A}, 250 \mathrm{VAC}, 1250 \mathrm{~W}$
Mechanical life	30 million operations
SUPPLY	AC voltage direct from input
AC supply range	110 V (From 99 to 140 V)
with transformer	230 V (From 198 to 264 V)
Standard voltage	400 V (From 342 to 484 V)
	460 V (From 393 to 557 V)
AC frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$
genseral	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to 90% RH non-condensing
Dielectric test voltage	Coil to relay contacts 4000 VAC
	Pole to pole (45 mm .) 2500 VAC
Weight	0.22 kg
C 1 International Standards	
EMC directive 89/336:	EN50081-Emission
	EN50082-Immunity
Low voltage directive 73/23:	EN60255-Electrical Relays

ORDERING INFORMATION

EXAMPLE:
TYPE
Voltage monitoring control relay
SUPPLY
AC with transformer

On special request, the relay can be modified to monitor the value of any voltage, e.g from sensors and transmitters as well as it can be delivered with separate supply terminals.

MAINS FREQUENCY
 \& VOLTAGE
 MONITORING RELAY

Type: UFWA

FEATURES

- Adjustable version with individual under- and overvoltage settings and under- and overfrequency settings
- Function setting with dipswitch
- Ceramic resenator controlled reference
- Time delay - on and off - individually adjustable
- One unit for three mains voltages
- LEDs indicate the state of the frequency
- LED indicates the state of input
- LED indicates the state of relay
- LEDs indicate the timing function

CONNECTION DIAGRAM
Rail mounting

Description:
The combined voltage and frequency relays are designed for applications where a voltage and/or a frequency needs to be monitored. UFWA are combined over- and under voltage and frequency relays.
The relay can by means of dipswitches and trimmers be set to work as:

1) an under voltage and frequency relay
2) an over voltage and frequency relay
3) a frequency relay only
4) or as an under and over voltage and frequency relay

Operation:

When the supply voltage is applied, the - power up reset - period begins. If the nominal voltage and/or frequency is applied to the input, the internal relay pulls in the end of the reset period.
If the input voltage/frequency exceeds the adjusted upper or lower limits the relay drops out.
If the input voltage/frequency comes between the lower limit plus the differential and the upper limit minus the differential, the relay pulls in.
The voltage differential is fixed 2% of the nominal input voltage The frequency differential is fixed 10% of tripping deviation. As under voltage relay only, the relay remains energized for input voltages exceeding the upper limit.
As over voltage relay only, the relay remains energized for input voltage under the lower limit.
As frequency relay only, the relay remains energized for input frequencies within the lower and upper limits.
As under and over and frequency relay, the relay remains energized for voltage and frequency within the limits.

Application:

To monitor mains voltages and frequencies. To protect electrical and electronic equipment from damage because of over- or under voltage. On special request, the relay can be modified to monitor higher or lower frequencies

PROGRAMMABLE FEATURES

SPECIFICATIONS

INPUT
Phase to phase voltage
Selectable by dipswitch

Adjustable range Differential

Frequency unit
Differential
Ref. deviation
Ref. temp. dependence
Response time

PERFORMANCE PARAMETERS TIMING
Time range during run
Response time
ELECTRICAL
Temp. dependency
Supply dependency

OUTPUT
Contact rating Mechanical life

SUPPLY

AC supply range
with transformer
Standard voltage

AC frequency range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage
Weight

Type B110: 100, 110 and 115 Type B230: 220, 230 and 240 Type B400: 380, 400 and 415 Type B460: 440, 460 and 480
$0 \pm 20 \%$
2% of U_{N}

Fixed approx. 10 \% of tripping deviation. ± 0.5 \%
$\pm 0.3 \%\left(-20\right.$ to $\left.80^{\circ} \mathrm{C}\right)$
max 200 msec .

$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90% RH non-condensing
Coil to relay contacts 4000 VAC Pole to pole (45 mm .) 2500 VAC 0.22 kg

C

EMC directive 89/336

International Standard
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

3 PHASE UNDER VOLTAGE CONTROL RELAY WITH PHASE SEQUENCE DETECTION

Type: PNDA \& PNDI (4 wire system)

FEATURES

- Accurate under voltage detection of each phase against neutral
- Phase sequence detection inhibit the relay with wrong sequence
- Adjustable Sensitivity from -5 to -25\% of nominal voltage
- Adjustable differential from -5 to -80\% of under voltage offset from nominal. Voltage range $\mathbf{0 , 2 5}$ to $\mathbf{2 0 \%}$ of under voltage
- Time delay - on and off - individually adjustable
- One unit for three mains voltages
- 6 LEDs indicate the state of input, phase sequence, timing function and relay

FUNCTION DIAGRAM

Description:
The 3 phase 4 wire voltage relays are designed for applications where the three phases need to be individually monitored for under voltage against neutral and correct phase sequence. The PNDA and PNDI contain a standard timing function. In addition the PNDI offers a true time delay on drop out even at total power failure. The relay works in "fail safe" mode and need no external power supply.

Operation:

Under normal phase conditions the relay is energized - contacts 11-14 and 21-24 closed - and the green "input" LED and the yellow "relay" LED are switched on.

If one or more phase voltages are below the preset under voltage value, the red "input" LED will be switched on and stay on untill all three phase voltages are above the set value plus the preset differential, given by a percentage of the under voltage offset from the nominal value.

If the state of the relay is not corresponding to the input signal, the yellow LED indicating delay "ON" or "OFF" will be on untill the relay changes state and corresponds to the input.

In case of wrong phase sequence the relay will not be energized and the red "inversed phase sequence" LED will be on indicating the fault.

CONNECTION DIAGRAM
Rail mounting

PROGRAMMABLE FEATURES
Socket mounting*

():SOCKET PIN
$\begin{array}{llll}12 & 14 & 22 & 24 \\ (4) & (3) & (8) & (9)\end{array}$
Fax: +4544858005 Mail:

SPECIFICATIONS

INPUT		
Phase to phase voltage	Type B110:	100, 110 and 115
Selectable by dipswitch	Type B230:	220, 230 and 240
	Type B400:	380, 400 and 415
	Type B460:	440,460 and 480
Input resistance	B110 130 k	
	B230 280 k	
	B400 500 k	
	B460 580 k	
Frequency range	45 to 440 Hz	
Under voltage, Range	- 5 to - 25%	
Differential, Range	5 to 80% of under voltage offset	
PERFORMANCE PARAMETERS		
TIMING		
Response time	Approx. 500 msec . with limited under voltage	
	Approx. 100 msec . with total phase loss	
Time range during run	Separate On and Off delay	
	0-10 sec. adjustable	
True time delay	PNDI $>6 \mathrm{sec}$. at total phase loss	
ELECTRICAL		
Nominal accuracy	all phases $\pm 2 \%$	
Limit accuracy	all phases $\pm 2 \%$	
Repeat accuracy	all phases $\pm 0,5 \%$	
Temp. dependence Supply dependence	Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$	
	Typ. $\pm 0.01 \% / \% \Delta U_{N}$	
OUTPUT	Relay, 2 C/O	
Contact rating	$6 \mathrm{~A}, 250 \mathrm{VAC}, 1500 \mathrm{~W}$	
Mechanical life	30 Million operations	
SUPPLY	AC voltage internal from L1 and L3	
AC supply rangewith transformer	110 V (From 75 to 127 V)	
	230 V (From 165 to 264 V)	
Standard voltage	400 V (From 285 to 457 V) 460 V (From 330 to 528 V)	
AC frequency range	45 to 440 Hz	
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$	
GENERAL		
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient	
Humidity	Up to $90 \% \mathrm{RH}$ non-condensing	
Dielectric test voltage	Coil to relay contacts 4000 VAC	
Weight	$0.22 \text { kg }$	
C		
EMC directive 89/336:	EN50081-Emission	
	EN50082-Immunity	
Low voltage directive 73/23:	EN60255- Electrical Relays	

ORDERING INFORMATION

EXAMPLE:

TYPE
3 Phase voltage control relay
INPUT AND SUPPLY VOLTAGE
100, 110 and 115 VAC
220,230 and 240 VAC
380,400 and 415 VAC
440,460 and 480 VAC
ADJUSTMENT
Trimpot and dipswitch adj.
HOUSING
Rail mounting
Socket mounting

5

CODE
Code End
Extended code

FEATURES

- LED guidance for easy installation
- Two ranges for precise setting
- Red and green LEDS indicate the state of the input and the relay

FUNCTION DIAGRAM

AC CURRENT RELAY
 WITH
 VOLTAGE COMPENSATED SETPOINT

Type: IUAB

Description:

The current relay IUAB is designed for monitoring up to 10 parallel connected equal loads. As soon as one of the loads is defective, and no longer draws current, the relay will give an alarm by dropping out.

If the load is resistive or in general dependent on the supply voltage, the load current will vary with the actual voltage. A supply voltage change of -10% will cause the load current to drop 10%, or the same as if one of the loads was lost at normal supply voltage. Commonly used current relays would send a false alarm as this is still an OK condition. With this relay the current set point is related to the actual supply voltage and the set point will vary with the same percentage as the supply voltage change. By using this set point compensation it is possible, without getting false alarms, to monitor load changes down to 10% or detect one defect load out of ten equal loads.

In order to simplify the installation the IUAB has two yellow LED's suggesting the direction of the adjustment on the current setting spindle. When the two yellow LED's are equally lit the current set point is precisely 5\% under the actual current. This means that the unit is adjusted to give an alarm if the current drops by 5% from the current value.

The current setting on the front refers to a current set point at nomina voltage.

The standard unit is made with a $1: 1$ voltage current relation as for resistive loads. If the relation is different from this or even inverse as for switch mode supplies used in e.g. fluorescent tubes, the voltage current relation can be modified to the actual application.

Application:

Monitoring e.g. heaters and lamps.

CONNECTION DIAGRAM
Rail mounting

SPECIFICATIONS

INPUT	AC current
Input Range:	Setpoint Range
B1-B2	0,2-1A
B1-B3	0,5-2,5A
AC frequency range	45 to 440 Hz
Max. continuous input	1,5 \times I range
Input resistance	0,05W / / range
Power up time	Fixed 2 sec .
Differential	Fixed 1\% of setting
PERFORMANCE PARAMETERS TIMING	
Response time	Approx. 100 msec .
ELECTRICAL	
Temp. dependence	Typ. ± 0.02 \% / ${ }^{\circ} \mathrm{C}$
OUTPUT	Relay, $2 \mathrm{C} / \mathrm{O}$
Contact rating	6 A, 250 VAC , 1500 W
Mechanical life	30 Million operations
DC output	0 to 20 mA at max. setpoint range
SUPPLY	AC voltage
AC supply range	24 V (From 20 to 28 V)
with transformer	110 V (From 85 to 121 V)
	$230 \mathrm{~V}($ From 187 to 264 V)
	$400 \mathrm{~V}($ From 323 to 484 V)
	460 V (From 374 to 506 V)
AC frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 2 \mathrm{~W}$
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to 90 \% RH non-condensing
Dielectric test voltage	Input to supply 4000 VAC
	Coil to relay contacts 4000 VAC
	Pole to pole 2500 VAC
Weight	0.19 kg in 35 mm . housing

ORDERING INFORMATION

EXAMPLE

TYPE
Multifunction current relay
SUPPLY
AC with transformer
SUPPLY VOLTAGE
From 20 to 28 VAC
From 85 to 127 VAC
From 85 to 127 VAC
From 187 to 264 VAC
From 323 to 457 VAC
From 374 to 506 VAC
ADJUSTMENT
Trimpot and dipswitch adj.
HOUSING
Rail mounting.(internal transformer)
SIZE
35 mm .
2 C/O

CODE
Code end
Extended code

EMC directive 89/336:
Low voltage directive 73/23:

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

$\longleftarrow 35,0 \mathrm{~mm} \longrightarrow$

FEATURES

- Supply from the battery
- Programmable voltage $12 \mathrm{~V}, \mathbf{2 4 V}, \mathbf{4 8 V} \& 110 \mathrm{~V}$
- LEDs indicate the state of the input
- Programmable OFF delay $\mathbf{0 - 1 0} \mathbf{~ s e c}$ or $\mathbf{0 - 1 0 0} \mathbf{~ s e c}$
- Programmable Latch for over voltage

Description:

The BMCA battery voltage relay is designed to measure battery voltage for under voltage. The BMCD battery voltage relay is designed to measure battery voltage for under voltage and over voltage. The relays are Programmable for $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$ or 110 V battery systems, can be set by DIP switch.

Application:

Avoiding deep discharging, or overcharging in UPS, stationary battery equipment and mobile battery equipment. Alarm function in case of faulty batteries or charges.

FUNCTION DIAGRAM

Overvoltage(BMCD)
Setpoint
Undervoltage
Setpoint $+2.5 \%$
Setpoint
Input \& supply
(BMCD)
Overvoltage relay
Undervoltage relay

* LATCH ONLY ON TYPE BMCD

CONNECTION DIAGRAM

Rail mounting
Socket mounting

SPECIFICATIONS

 inPutBMCA \& BMCD

12 V , range int. adjustable
Under voltage from 9 to 12 V
Over voltage from 12 to 15 V Precision $12 \mathrm{~V} \pm 0.1 \mathrm{~V}$

24 V , range int. adjustable Under voltage from 18 to 24 V Over voltage from 24 to 30 V Precision $24 \mathrm{~V} \pm 0.2 \mathrm{~V}$

48 V , range int. adjustable
Under voltage from 36 to 48 V Over voltage from 48 to 60 V Precision $48 \mathrm{~V} \pm 0.4 \mathrm{~V}$

110 V , range int. adjustable Under voltage from 83 to 110 V Over voltage from 110 to 137 V Precision $110 \mathrm{~V} \pm 0.9 \mathrm{~V}$

Under voltage
Approx. setpoint +2.5 \%
Over voltage
Approx. setpoint - 2.5 \%
PERFORMANCE PARAMETERS
TIMING
Time range accuracy
ELECTRICAL
Repeat accuracy
Temp. dependence
OUTPUT
Under voltage
Over voltage
Contact rating
Mechanical life

SUPPLY

Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage

Weight

C ϵ

EMC directive 89/336:

Low voltage directive 73/23
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensin
Coil to relay contacts 4000 VAC Pole to pole 2500 VAC 0.14 kg
$\pm 5 \%$
< 0.5 \%
Typ $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$

Relay, 1 C/O and 1 N/C, AgNi
Relay, $1 \mathrm{~N} / \mathrm{O}$ and $1 \mathrm{~N} / \mathrm{C}, \mathrm{AgNi}$
6 A, 250 VAC, 1500 W
30 Million operations

DC voltage, supply and input internal connected From 8 to 180 V

2,5 W

International Standard
EN50081 - Emission
EN50082-Immunity
EN60255 - Electrical Relays

ORDERING INFORMATION

EXAMPLE:
TYPE
Battery multi control relay under volt. BMCA
Battery multi control relay over \& under volt. BMCD
Battery multi control relay over \& under volt. BMCD

Supply range
form 8 to 180 V

ADJUSTMENT
Trimpot adj.

HOUSING

Rail mounting
Socket 11 pin

SIZE
35 mm .

CODE
Extend code
Code end

0820

A

A

3

E

MCD 0820 A A 3 C

DC VOLTAGE MONITO-

 RING RELAYType:BMWB

FEATURES

- Includes two relays for use in parallel or for individual under and over voltage signalisation
- Accurateadjustmentforupperlimit,upperreturn, lower limit and lower return by means of multiturn potentiometers
- Easy dipswitch setting selects function as under and over voltage relay, window relay or under or over voltage relay only
- LEDs indicate the state of the input
- LED indicates the state of the relay
- LEDs indicate when the timing function is active

FUNCTION DIAGRAM

CONNECTION DIAGRAM

Rail mounting

Description:
BMWB is a combined over and/or under voltage relay.
The voltage relay is designed for precise monitoring of a wide range of DC voltages from 14 V to 340 V .
With a build in high efficiency switch mode power supply, the BMWB is able to cover the whole measuring range without the need of an external supply.
The BMWB can by means of dipswitches be set to work as a relay for monitoring under voltage and over voltage with two individual C / O contacts, or the contacts can be paralleled and the BMWB be used as a window discriminator relay where both C/O contacts are in the powerless position outside the window. With the paralleled relays the BMWB can be set to only register under or over voltage.

Operation:

When the supply voltage is applied, the - power up reset - period begins. If a voltage within the allowed voltage range is applied to the input, the internal relay pulls in at the end of the reset period.
If the input voltage exceeds the adjusted upper or lower limit, the corresponding relay or both relays drops out.
If the input voltage comes between the upper return and the lower return, the relay pulls in.
As under voltage relay only, the relays remains energized for input voltages exceeding the upper limit.
As over voltage relay only, the relay remains energized for input voltage under the lower range limit, until it drops out due to power loss at inputs below 14 V .

Application:

Voltage monitoring in UPS, stationary and mobile battery installations.

PROGRAMMABLE FEATURES

Socket Mounting

Input \& supply

SPECIFICATIONS

INPUT
DC voltage 0-340 V

Ranges selectable by dipswitch

Differential

PERFORMANCE PARAMETERS

 TIMINGResponse time
Time range during run
ELECTRICAL
Temp. dependence

OUTPUT
Contact rating
Mechanical life
SUPPLY
Voltage range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage

Weight Nett

EMC directive 89/336:

Low voltage directive 73/23:

ORDERING INFORMATION

EXAMPLE:

TYPE
DC voltage monitoring control relay
INPUT AND SUPPLY VOLTAGE
$14 \mathrm{~V}-340 \mathrm{~V}$ DC

ADJUSTMENT

Trimpot and dipswitch adj

HOUSING

Rail mounting
Socket Mounting

SIZE

35 mm
CODE END

Relay Contacts:

Max. breaking capacity
A - resistive load DC B - resistive load $A C$

BATTERY SYMMETRY MONITORING RELAY

Type: BVSA

FEATURES

- Supply from the battery
- LEDs indicate the status and the fault conditions
- Latch for symmetry failure
- Adjustable symmetry level
- Adjustable Timeoff delay to prevent false alarm
- Test and reset button on the relay
- Terminals for remote test and reset

FUNCTION DIAGRAM

CONNECTION DIAGRAM

Rail mounting

Description:

The BVSA is designed to give an early warning for cells, in a battery system, that are performing different from the other cells. The battery system being monitored must consist of two equal blocks coupled in series with an accessible centerpoint

Operation:

The measuring system is based on a comparison of the voltage from the two blocks. Over the lifetime they are charged and discharged equally and the voltage will, within close limits, be the same as long as all cells in both blocks are healthy. At the end of the lifetime, or if a cell is shorted, the two blocks will perform different. The BVSA will sense the difference in performance and the internal relay will give an early warning by dropping out. Information about which battery block that is defect is indicated by the LEDs on the front. In order to prevent false alarm the BVSA includes a timing function.

Application:

Detection of an early failure in battery cells within a battery system. For a complete monitoring system the BVSA can be used together with a standard battery voltage monitoring relay - type BMCD (HI/LOW)

Socket mounting
Fax: +4544858005 Mail: thiim@thiim.com

SPECIFICATIONS

INPUT

PERFORMANCE PARAMETERS
Time range off delay
standart
Time range accuracy
ELECTRICAL
Repeat accuracy
Temp. dependence
INPUT
Type 12V: Adjustable from Type 24V: Adjustable from
Type 48V: Adjustable from
OUTPUT
Under voltage
Contact rating
Mechanical life

SUPPLY

Power consumption

GENERAL
Temperature range
Humidity
Dielectric test voltage
Weight
C ϵ
EMC directive 89/336:
Low voltage directive 73/23

0-10 sec. adjustable
-20% to $+50 \%$
< 1 \%
Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
$0,05 \mathrm{~V}-0,5 \mathrm{~V}$
$0,1 \mathrm{~V}-1,0 \mathrm{~V}$
$0,2 \mathrm{~V}-2,0 \mathrm{~V}$

Relay, $2 \mathrm{C} / \mathrm{O}, \mathrm{AgCdO}$
6 A, 250 VAC, 1500 W
30 Million operations

DC voltage, supply and input internal connected
12 V (From 8 to 16 V)
24 V (From 16 to 32 V) 48 V (From 32 to 64 V)

3 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90 \% RH non-condensing
Coil to relay contacts 4000 VAC Pole to pole 2500 VAC 0.13 kg

International Standards
EN50081-Emission
EN50082 - Immunity
EN60255 - Electrical Relays

ORDERING INFORMATION

BATTERY SYMMETRY MONITORING RELAY

Type: BMSA

FEATURES

- Early warning for Cell deterioration like Sulphating or internal Short Circuit
- All in one unit by Multi Range from 24 to 512 Volt
- No current leak through the middle point connection
- Optional Over and Under voltage monitoring
- Easy set-up by keying in actual parameters or loading in through a RS 232 connection
- Time delay - On and Off - can be set individually
- Latched Relay function can be selected
- LEDs indicate the status of the relay, latch and timing function
- Reset and individual Test keys for $+B$ and $-B$
- RoHS technology
- Extremely compact and low power consumption

CONNECTION DIAGRAM

Contact information:
Symmetry relay: 11, 12, 14 and 21, 22, 24
Optional: Under voltage relay: 31, 32, 34. Excludes 21, 22, 24
Optional: Over voltage relay: 41, 42, 44. Excludes 21,22, 24
For a healthy battery the following contacts will be closed: 11-14, 31-34 and 41-42

Description:

The multipurpose Battery Symmetry Relay BMSA is designed to monitor and give an early warning if one or more cells are performing different from an average cell in the battery. The battery must consist of two blocks of cells coupled in series with an accessible middle point used as a reference potential. No current will be drawn from the middle point. The Symmetry Relay monitors that the positive and the negative battery blocks perform equally independent of the actual charge and load level. The two battery blocks do not need to be of equal voltage (same number of cells), but the individual cells must be equal and have the same history. The BMSA accepts up to twice as many cells in one block as in the other. The nominal voltage range of each block can be set from 12 V to 256 V and the actual voltage must be within the range of 9 to 300 V allowing a battery voltage ranging from 18 V to 600 V . For high battery voltages exceeding 300 V the middle point connection is critical. If it can (even accidentally) be disconnected, the maximum battery voltage must be kept below 300 V .
As an option, the BMSA can be extended to monitor the actual battery voltage for under and over voltage. The option will include individual relays for under and over voltage.

Operation:

When the BMSA is powered up for the first time it will need to be configured to the application. The configuration can be done either by using the keys on the front, or through a RS232 port in the side of the unit. When it is programmed it is ready to monitor the battery. For detailed information of the function of the Display and the LED's, please see the block diagram. The display will show the two battery block voltages, the total battery voltage and the average cell voltage difference between the two battery blocks in \%. For each readout, the LED's on the front will indicate what the display is showing. The display can be set to show one particular measured value, or continuously cycle through the different measurements, one after the other in a specified time sequence. When the BMSA is connected to the battery, and the battery is OK, then the internal relay will pull in. When the cell difference exceeds the set maximum, the OFF delay will start to expire and the yellow LED "Toff" will be lit. After the set time delay the relay will drop out. Depending on the latch setting, the relay will remain out or may go in again if the battery returns to a healthy condition. The BMSA is constantly checking the battery connections and blinks with the LED: $+\mathrm{B},-\mathrm{B}$ or both LED's if the connection to battery plus, minus or the middle point is disconnected.

Test and Reset function:

The two test keys offset the measured voltage from either battery block by 10%. The display and the function of the BMSA will respond to the change with a new voltage and cell difference information and the relay will operate. The reset key is used for releasing the Latch function and for programming.

Application:

The BMSA is used on batteries in back up supplies where, by matching two batteries against each other, a warning can be given as soon as a cell in one of the battery blocks starts to deteriorate. As the BMSA is not depending on the actual charge and load status, it is a powerful supervision of only occasionally used batteries in emergency systems.

SPECIFICATIONS

INPUT
Set Range

Functional Range

Current

RS 232

DC voltage
$2 \times 12 \mathrm{Vdc}$ to $2 \times 256 \mathrm{Vdc}$ (Numbers of cells times cell voltage) $2 \times 9 \mathrm{Vdc}$ to $2 \times 300 \mathrm{Vdc}$ with the middle point "M" connected.
Maximum short time voltage $2 \times 350 \mathrm{Vdc}$ or $1 \times 350 \mathrm{Vdc}(+B-B)$ if the middle point " M " is disconnected 120 mA @ $2 \times 9 \mathrm{Vdc}$ 6 mA @ $2 \times 300 \mathrm{Vdc}$
Isolated. Used with special adapter and mini USB female connector.

PERFORMANCE PARAMETERS
RESOLUTION
For Set Range < or $=2 \times 48 \mathrm{~V}< \pm 50 \mathrm{mV}$. Display voltage $\pm 0,1 \mathrm{~V}$
For Set Range 48 V to $256 \mathrm{~V} \quad< \pm 200 \mathrm{mV}$. Display voltage $\pm 1 \mathrm{~V}$
Average cell diff. in \% $< \pm 0.5 \%$ @ $12 \mathrm{~V} / 70 \mathrm{~V}$ and $48 \mathrm{~V} / 300 \mathrm{~V}$ range $< \pm 0.1 \%$ @ 48V/70V and $256 \mathrm{~V} / 300 \mathrm{~V}$ range Display average cell diff. $\pm 0.1 \%$

TIMING

Response time
Time range
ELECTRICAL
Temp. dependence

OUTPUT RELAY

Contact rating Mechanical life

SUPPLY

Range

Fuse
Power consumption
Typical < 200msec
Separate On and Off delay setting $0.1-99.9 \mathrm{sec}$.

A/D converting Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
$2 \mathrm{C} / \mathrm{O}$ or $3 \times 1 \mathrm{C} / \mathrm{O}$ with Optional Over \& Under Voltage monitoring
6 A, 250 VAC, 1500 W
30 million operations

Self Supplied, DC voltage
$18-600 \mathrm{~V}$ (300 V if the middle point is not connected)
Internal $2 \times 250 \mathrm{~mA}$ in +B and -B Breaking capacity 100 A / 250 Vdc Max 4 W

GENERAL

Temperature range
Humidity
Dieletric test voltage
Pole to pole
Weight
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambien
Up to 90 \% RH non-condensing
Coil to relay contacts 4000 VAC
170 g standard
200 g with optional over and under voltage

Directive 2002/95/EC of RoHS 27. January 2003		
EMC directive 89/336:	Emission and Immunity	EN50263:2000
EN61000-3-2		
Low voltage directive 73/23:	Electrical Relays	EN61000-3-3
EN60255		

ORDERING INFORMATION

EXAMPLE:
TYPE
Battery Symmetry Relay
SUPPLY VOLTAGE
18 V to 300 Vdc
ADJUSTMENT
Programmed
HOUSING
Rail mounting
SIZE
35 mm . Symmetry Relay only
45 mm . With optional Under \& Over voltage
CODE
Code end
Extended code

Functional diagram for battery symmetry relay type: BMSA
THiiM

Definitions and limitations

Nominal cell voltage $\mathrm{x} . \mathrm{xx}$ is used to calculate the voltage range to be used. The range is set according to the battery with the highest No. of cells. If the battery has a total nominal voltage up to 48 V , it will be measured in the 70 V range. If the battery has a total nominal voltage higher than 48 V , it will be measured in the 300 V range.

Number of cells times nominal voltage of the cells, must be within the range from 12 V to 256 V for each of the two Batteries.
The actual voltage of each of the two batteries must be within the range of 9 to 300 volts.
NOTE: If the middle point M is not connected or disconnected, the maximum voltage of $\pm B$ must be below 340 V .
Cell voltage difference in $\%$ is the percentual difference between the average voltage of the cells in the + Battery compared to the cells in the - Battery. The calculation is $(100$ * $(($ Av. Cell + Batt) $)-($ Av. Cell - Batt $))) /\left(0.5^{*}((\right.$ Av. Cell + Batt $)+($ Av. Cell - Batt) $)) \%$ \%

Cell voltage difference in \% can be set from 1% to 20%.
1% is equal to a cell voltage difference of 20 mV for two cells of 2.0 V and 120 mV between two 12 V batteries at 12 V .
20% is equal to a cell voltage difference of 400 mV for two cells of 2.0 V and $2,4 \mathrm{~V}$ between two 12 V batteries at 12 V .
The resolution of the voltage measurement is calculated up to 70 V to be $70 / 4096=17.1 \mathrm{mV}$. In the range up to 300 V it is 73.2 mV .
The practical resolution over the temperature range is 2 to 3 times the calculated values.
Time delay ON or OFF can be set from 0.1 to 99.9 sec .
Less than $0,1 \mathrm{~mA}$ will be drawn from the middle point. Total supply will be taken from the +B and -B .

Optional

Over and under voltage measuring with one separate relay for each function.

$\longmapsto 35,0 \mathrm{~mm} \longrightarrow$

DC RIPPLE RELAY

Type: BRIA

Description:

The ripple relay BRIA is developed to supervise thyristor rectifiers for faulty thyristors. The relay is extremely sensitive, stable and detects with high accuracy ripple levels exceeding the set sensitivity in the frequency range from 30 to 3000 Hz .. Supply power is taken from the input, and by using a wide range switchmode supply, the same relay can be used in systems with voltages from 18 to 340 Vdc . In order to have the same precision for all system voltages, the range 18 to 340 Vdc is divided into 4 overlapping subranges, selected by two DIP-switches. By use of another DIP-switch, the sensitivity range can be set from 0.4 to $1.6 \%, 0.8$ to 3.2% or 1.6 to 6.4% of the system voltage.

Operation:

The input voltage is divided into two signals. In order to measure the ripple in \% of the varying system voltage, one part is averaged and used to set the internal reference voltage. The other signal, the AC signal related to the ripple, is amplified and conditioned through a bandpass filter in order to avoid false triggering due to frequencies outside the measuring range from 30 to 3000 Hz . The rectified mean value is then compared to a set part of the reference voltage. When the relay is powered up, and the ripple on the input is below the set limit, then the internal relay will pull in and the contacts 11-14 and 2124 will close. The indication will be a green LED for the input and a yellow for the relay. If the ripple content of the input voltage increases and exceeds the set sensitivity, then the OFF delay starts to elapse, indicated by the red input LED and a yellow timing LED. The relay will drop out when the set OFF delay has expired and the yellow relay LED will extinguish. If the ripple content decreases by 10% of the set limit, the ON delay starts to elapse, indicated by the green input LED and a yellow timing LED. The relay will pull in when the set ON delay has expired and the yellow relay LED will be lit.

Application:

Supervision of DC Power supplies in general or battery chargers in UPS systems.

PROGRAMMABLE FEATURES

Socket mounting
(5)

A1

INPUT

Voltage Ranges selectable	$18-50 \mathrm{~V}$
by dipswitch	$32-100 \mathrm{~V}$
	$64-200 \mathrm{~V}$
	$110-340 \mathrm{~V}$
Ripple Ranges selectable	$0.4-1.6 \%$
by dipswitch	$0.8-3.2 \%$
	$1.6-6.4 \%$
Hysteresis	10% of Ripple sensitivity

PERFORMANCE PARAMETERS TIMING
Response time
Time range during run
ELECTRICAL
Temp. dependence

OUTPUT
Contact rating
Mechanical life

SUPPLY
Power consumption

GENERAL

Temperature range
Humidity
Dieletric test voltage

Weight

DC voltage $0-340 \mathrm{~V}, 374 \mathrm{~V}_{\text {Peak }}$
18 - 50 V
$32-100 \mathrm{~V}$
64 - 200 V
$0.4-1.6 \%$
$0.8-3.2 \%$
10% of Ripple sensitivity

Approx. 200 msec.
Separate On and Off delay
0.2-10 sec. adjustable

Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$

Relay, $2 \mathrm{C} / \mathrm{O}, \mathrm{AgNi}$
6 A, 250 VAC, 1500 W
30 million operations
DC voltage from input Max. 3 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90% RH non-condensing
Coil to relay contacts 4000 VAC Pole to pole 2500 VAC 0.22 kg

EMC directive 89/336:

Low voltage directive 73/23:

International Standards
Emission and EN50263:2000 Immunity EN61000-3-2 EN61000-3-3 EN60255

EXAMPLE:
TYPE
DC voltage monitoring control relay
INPUT AND SUPPLY VOLTAGE 18-340 Vdc

ADJUSTMENT

Trimpot and dipswitch adj.
HOUSING
Rail mounting Socket Mounting

SIZE
35 mm .
CODE
Code end
Extended code

$\longmapsto 35,0 \mathrm{~mm} \longrightarrow$

$\longmapsto 45,0 \mathrm{~mm} \longrightarrow$

$\longmapsto 100,0 \mathrm{~mm} \longrightarrow$

3 PHASE VOLTAGE CONTROL RELAY
PADA, PADI
PANA, PANI

FEATURES

- Detect phase-loss and phase-regeneration in three phase systems
- High sensitivity for the protection of motors and power transformers
- Insensitive to harmonics and spikes as the detection system includes a narrow band pass filter
- Adjustable version with individual adjustments for unbalanced and balanced under- and overvoltage settings
- Function setting with dipswitch
- Time delay - on and off - individually adjustable
- One unit for three mains voltages
- LED indicates the state of input, relay and timing function

Description:

The phase failure relays are designed for applications where a three-phase system needs to be monitored for unbalance or deviation in balanced voltage. The relays includes a standard timing function. In addition the PADI and PANI offers a true time delay on drop out even at total power failure. The relay works in "fail safe" mode and need no external power supply. If an external stable power supply is available the 45 mm housing offers seperate terminals for internal power.

A - function monitors the three-phase system for unbalance due to phase angle and phase voltage deviations e.g. a blown fuse or a bad connection.
B - function monitors the three-phase system for both unbalance (as the A-function) and balanced under voltage.
C - function monitors the three-phase system for both unbalance (as the A - function) and balanced over voltage.
D - function Monitors the three-phase system for all possible deviations by monitoring unbalance and balanced under-and over voltage.

Unbalance due to phase angle and phase voltage deviations is very accurately measured by measuring the inverse phase system relatively to the main system. The method is independent of the actual balanced voltage and very insensitive to electrical noise.

Balanced voltage is measured by rectifying and adding the threephase voltages.

Operation:

Under normal phase conditions the relay is energized and the green LEDs are switched on. If a phase failure is detected, or the supply voltage for the electronic system is lost, the relay drops out and the LED, related to the type of failure, is switched off.

Application:

To switch off motors automatically before damage due to faulty supply, and to switch them on again as soon as the supply is re-established. E.g. pumps, oilburners, ventilators and refrigerators. To monitor the three-phase main system and control the use of local emergency generators.
To prevent motors from being switched on to a faulty supply e.g. cranes and elevators.

CONNECTION DIAGRAM

Rail mounting 35 mm

Rail mounting $\quad 45 \mathrm{~mm}$

Socket mounting*

*CE up to 230 V phase to phase voltage **PANA with externaly supply only 1C/O
Fax: +4544858005 Mail: thiim@thiim.com

SPECIFICATIONS

INPUT		
Phase to phase voltage	Type B110:	100,110 and 115
Selectable by dipswitch	Type B230:	220,230 and 240
	Type B400:	380,400 and 415
Input resistance	$300 \mathrm{k} \Omega$	$100<\mathrm{U}_{\mathrm{N}}<200 \mathrm{~V}$
	$500 \mathrm{k} \Omega$	$200<\mathrm{U}_{\mathrm{N}}<500 \mathrm{~V}$
Frequency range	45 to 66 Hz	
Balanced under voltage	Approx. -40%	A \& C Function
	0 to -20%	B \& D Function
Balanced over voltage	0 to $+20 \%$	C \& D Function
Differential		
Unbalance	2% of U_{N}	
Balanced	2% of U_{N}	

PERFORMANCE PARAMETERS
TIMING
Response time

Time range during run

True time delay ELECTRICAL Unbalance sensitivity

Temp. dependence Supply dependence

ORDERING INFORMATION

EXAMPLE: 35mm Housing

TYPE

3 Phase voltage control relay
3 Phase $+N$ voltage control relay
As PADA + True time delay
As PANA + True time delay

INPUT

with transformer intern conected to L1-L3
100, 110 and 115 VAC
220,230 and 240 VAC
380, 400 and 415 VAC
440, 460 and 480 VAC

ADJUSTMENT

Trimpot and dipswitch adj.

HOUSING

Rail mounting
socket 11 pin

SIZE

35 mm
CODE END

EXTERNALY SUPPLY CONECTIONS
EXAMPLE: 45 mm Housing

TYPE
3 Phase voltage control relay 3 Phase + N voltage control relay

NOMINAL INPUT

standart input
100,110 and 115 V
220, 230 and 240 V
380,400 and 415 V
440,460 and 480 V
(other voltages on request)
10.0 to 99.9 V
100. to 999. V

SUPPLY VOLTAGE

18-360 VDC and 20-240 VAC
From 19.2 to 28.8 VAC
From 38.4 to 57.6 VAC
From 80 to 138 VAC
From 176 to 288 VAC
From 304 to 498 VAC
From 352 to 576 VAC
(other voltages on request)

ADJUSTMENT

Trimpot and dipswitch adj.
HOUSING
Rail mounting 45 mm .
Socket 11 pin 35 mm .
CODE END

EMC directive 89/336:
Low voltage directive 73/23:

Relay, 2 C/O
6 A, 250 VAC, 1500 W
30 Million operations

18-360 VDC and 20-240 VAC

AC voltage from L1 \& L3
110 V (From 80 to 138 V)
230 V (From 176 to 288 V)
400 V (From 304 to 498 V)
460 V (From 352 to 576 V)

AC/DC voltage from A1 \& A2
24 to 480 V can be specified
45 to 440 Hz
4 VA, 3 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90% RH non-condensing
Coil to relay contacts 4000 VAC
Pole to pole (45 mm .) 2500 VAC
11-12-14 to 21-22-24
0.22 kg

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

$\square 35,0 \mathrm{~mm} \longrightarrow$

$\longmapsto 45,0 \mathrm{~mm} \longrightarrow$

3-PHASE
SEQUENCE CONTROL \&
PHASE MONITORING
RELAY
3 wire: PAHA \& PAHI
4 wire: PAMA \& PAMI

FEATURES

- Active contact function for both phase sequences with two relays
- Detects phase sequence, phase failure, phase regeneration and phase loss in three-phase mains
- High sensitivity for the protection of installations, control gear, motors and power transformers
- Time delay - on and off - individually adjustable. PAHI and PAMI includes a true time delay independent of the power supply
- Insensitive to harmonics and spikes as the detection system includes a narrow band pass filter
- Adjustable set points with individual adjustments for unbalanced and balanced under and over voltage settings
- Function setting with DIP-switch
- 12 standard mains voltages covered by just 4 units
- LED indication of the state of input, relay and timing function

PROGRAMMABLE FEATURES

Description:

The PAHA \& PAHI are 3 wire relays for sequence control and phase monitoring. The PAHI includes a true time delay. The PAMA \& PAMI are 4 wire relays for sequence control and phase and neutral monitoring. The PAMI includes a true time delay.

The phase sequence and phase and neutral monitoring relays are designed for applications where the sequence of a three-phase system needs to be controlled. In addition to the sequence control the relays monitors the three-phase system for phase unbalance, and according to the selected setting, they can further monitor balanced under or over voltage, as well as both under and over voltage. The relays work in "fail-safe" mode and the 35 mm modules need no external power supply. If an external stable power supply is available, the 45 mm modules offer separate terminals for the internal power.

Unbalance, due to phase angle and phase voltage deviation, is very accurately measured by measuring the inverse phase system relatively to the main system. The method is independent of the actual balanced voltage and perfect for the protection of three-phase motors, generators and transformers. The measuring system is insensitive to higher harmonics and secures the relays from false triggering due to "noisy" power lines. As the measuring system includes the phase angles in the measurement, it provides full protection against regenerated phases. Balanced voltage is measured by adding the three individual rectified phase voltages.

Operation:

Under normal phase conditions the green input LED is on and one of the sequence sensitive relays will be energized, indicated by a yellow LED. The yellow LED, next to the description, shows the sequence of the threephase system. If there is a phase deviation beyond one of the set levels, the failure will be detected, and the red input LED will go on. During the set delay period the yellow timing LED for off delay will be on. At the end of the timing period the relay will drop out and only the red input LED will stay on. If the common phase voltage drops below -40%, the relay will drop out, even if the under voltage detection is disabled. If the phase or the separate supply voltage is lost, the relay and all LED's will de-energize with out delay for PAHA and PAMA. The PAHI and PAMI will be able to hold the relays for more than 6 sec .

Application:

To prevent motors from rotating in the wrong direction and being switched on to a faulty supply. Motor protection by controlling the direction of rotation and on-off switching depending on supply conditions. E.g. pumps, compressors, ventilators and refrigerators. Automatic control of phase sequence and monitoring of phase and neutral voltages in mobile equipment like refrigerated containers, control and distribution panels and machines used on building sites and on service jobs.

45mm Rail Mounting

CONNECTION DIAGRAM

35mm Rail mounting

45

SPECIFICATIONS

MEASURING CIRCUIT		
Phase to phase voltage	Type B110: 100, 110 and 115	
Selectable by DIP switch	Type B230: 220, 230 and 240	
	Type B400: 380, 400 and 415	
	Type B460: 440, 460 and 480	
Input resistance	$300 \mathrm{k} \Omega$	$100<\mathrm{U}_{\mathrm{N}}<200 \mathrm{~V}$
	$500 \mathrm{k} \Omega$	$200<U_{N}<480 \mathrm{~V}$
Frequency range	45 to 66 Hz	
Unbalance sensitivity *	Adj. 5 to 25 \%	
Balanced under voltage	Approx. - 40 \%	A - Function
	Adj. 0 to - 20 \%	B-\& D-Function
Balanced over voltage	Adj. 0 to + 20 \%	C-\& D - Function
Differential		
Unbalance	2% of U_{N}	
Balanced	2% of U_{N}	

* Unbalance is defined and tested by varying one phase against neutral keeping the two other phases on nominal value against neutral The 4-wire units PAMA \& PAMI are further tested for the same sensitivity by varying neutral, keeping the three phase to phase voltages on nominal values

PERFORMANCE PARAMETERS

TIMING

Response time

Time range during run

True time delay
ELECTRICAL
Temp. dependence
Supply dependence

OUTPUT
Contact rating
Mechanical life

SUPPLY
AC supply range
with transforme
Standard voltage

AC frequency range
Power consumption
GENERAL
Temperature range
Humidity
Dielectric test voltage

Weight

Directive 2002/95/EC of
27 January 2003
EMC directive 89/336:

100 to 500 msec . depending on fault Approx. 100 msec . with drop out Separate On and Off delay
$0-10$ sec. adjustable PAHI \& PAMI >6 sec. at total supply loss

Typical: $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Typical: $\pm 0.01 \% / \Delta \mathrm{U}$

Relay, 2 NO (moving contact connected)
6 A, 250 VAC, 1500 W
30 Million operations

AC voltage from L1 \& L3
110 V (From 80 to 138 V) 230 V (From 176 to 288 V) 400 V (From 304 to 498 V) 460 V (From 352 to 576 V) AC/DC voltage from A1 \& A2 24 to 480 V can be specified 45 to 440 Hz
4 VA, 2 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Up to 90 \% RH non-condensing Coil to relay contacts 4000 VAC

APPLICATION DIAGRAM

ORDERING INFORMATION

EXAMPLE: 35 mm Housing Internal supply connection

TYPE

3 Phase sequence \& voltage relay 3 Phase +N sequence \& voltage relay
PAHA + True time delay
PAMA + True time delay

INPUT

Standard voltages
Transformer internal conected to L1-L3
100, 110 and 115 VAC
220, 230 and 240 VAC
380, 400 and 415 VAC
440,400 and 480 VAC

ADJUSTMENT
Trimpot and dipswitch adj.

HOUSING

Rail mounting
Socket 11-pin

SIZE

35 mm .
CODE END

EXAMPLE: 45mm w/socket
External supply connections
TYPE
3-Phase sequence \& voltage relay 3 -Phase +N sequence \& voltage relay
PAHA + True time delay
PAMA + True time delay

INPUT

standard voltages
100, 110 and 115VAC
220, 230 and 240VAC
380, 400 and 415VAC
440,460 and 480VAC
(Other voltages on request)
10.0 to 99.9 V
100. to 999 . V

SUPPLY
AC with transformer
AC/DC with switch mode supply
SUPPLY VOLTAGE
18-360VDC and 20-240VAC
From 19.2 to 28.8 VAC
From 38.4 to 57.6 VAC
From $\quad 80$ to 138 VAC
From $\quad 176$ to 288 VAC
From $\quad 176$ to 288 VAC
From 304 to 498 VAC
From 352 to 576 VAC
(Other voltages on request)
ADJUSTMENT
Trimpot and dipswitch adj.

HOUSING

Rail mounting 45 mm wide
Socket 11 -pin 35 mm wide
CODE END

SOCKET MOUNTING*

*CE up to 230 V phase to phase voltage

3 PHASE \&

3 PHASE + N VOLTAGE \& FREQUENCY CONTROL RELAY

PAFA, PAGA
PAFB, PAGB

FEATURES

- Detect phase-loss and phase-regeneration in three phase systems
- High sensitivity for protection of motors and power transformers
- Insensitive to harmonics and spikes as the detection system includes a narrow band pass filter
- Adjustable version with individual adjustments for unbalanced and balanced under- and overvoltage settings and under- and overfrequency settings
- Function setting with dipswitch
- Ceramic resenator controlled reference
- Time delay - on and off - individually adjustable
- One unit for three mains voltages
- LEDs indicate the state of the frequency
- LED indicates the state of input
- LED indicates the state of relay
- LEDs indicate the timing function

Description:

The phase failure relays are designed for applications where a three-phase system needs to be monitored for unbalance or deviation in balanced voltage or deviation in frquency. PADF includes a standard timing function. the PADF offers seperate terminals for internal power.

A - function monitors the three-phase system for unbalance due to phase angle and phase voltage deviations e.g. a blown fuse or a bad connection.
B - function monitors the three-phase system for both unbalance (as the A - function) and balanced under voltage.
C - function monitors the three-phase system for both unbalance (as the A-function) and balanced over voltage.
D - function Monitors the three-phase system for all possible deviations by monitoring unbalance and balanced under-and over voltage.

Unbalance due to phase angle and phase voltage deviations is very accurately measured by measuring the inverse phase system relatively to the main system. The method is independent of the actual balanced voltage and very insensitive to electrical noise.

Balanced voltage is measured by rectifying and adding the threephase voltages.

Operation:

Under normal phase conditions the relay is energized and the green LEDs are switched on. If a phase failure is detected, or the supply voltage for the electronic system is lost, the relay drops out and the LED, related to the type of failure, is switched off.

Application:

To switch off motors automatically before damage due to faulty supply, and to switch them on again as soon as the supply is re-established. E.g. pumps, oilburners, ventilators and refrigerators. To monitor the three-phase main system and control the use of local emergency generators.
To prevent motors from being switched on to a faulty supply e.g. cranes and elevators.
To monitor the mains frequency and control the use of local generators or stand-by supplies.
To protect dieselgenerator plants against over and under speed.
To protect electrical and electronic equipment from damage due to over and under frequency

CONNECTION DIAGRAM

Rail mounting

PROGRAMMABLE FEATURES

SPECIFICATIONS

INPUT		
Phase to phase voltage	Type B110:	100,110 and 115
Selectable by dipswitch	Type B230:	220,230 and 240
	Type B400:	380,400 and 415
Input resistance	$300 \mathrm{k} \Omega$	$100<\mathrm{U}_{\mathrm{N}}<200 \mathrm{~V}$
	$500 \mathrm{k} \Omega$	$200<\mathrm{U}_{\mathrm{N}}<500 \mathrm{~V}$
Frequency range	45 to 66 Hz	Unbalance
Balanced under voltage	Approx. -40%	A \& C Function
	0 to -20%	B \& D Function
Balanced over voltage	0 to $+20 \%$	C \& D Function
Differential		
Unbalance	2% of U_{N}	
Balanced	2% of U_{N}	

PERFORMANCE PARAMETERS
TIMING
Response time

Time range during run

Frequency unit Differential Ref. deviation Ref. temp. dependence Response time

Approx. 500 msec . with small variation Approx. 100 msec . with drop out Separate On and Off delay $0-10$ sec. adjustable

Fixed approx. 10 \% of tripping deviation $\pm 0.5 \%$
± 0.3 \% (-20 to $80^{\circ} \mathrm{C}$) max 200 msec .

ELECTRICAL
Unbalance sensitivity
5 to 25 \%

Temp. dependence Supply dependence

ORDERING INFORMATION

* Unbalance is tested by varying one phase against neutral keeping the two other phases on nominal value against neutral.

OUTPUT

Contact rating Mechanical life

SUPPLY
AC supply range
with transformer
Standard voltage

AC frequency range Power consumption

GENERAL

Temperature range
Humidity Dielectric test voltage

Weight

EMC directive 89/336

Low voltage directive 73/23:

Relay, 2 C/O
6 A, 250 VAC, 1500 W
30 Million operations

AC/DC voltage from A1 \& A2 110 V (From 80 to 138 V) 230 V (From 176 to 288 V) 400 V (From 304 to 498 V) 460 V (From 352 to 576 V) 24 to 480 V can be specified

45 to 440 Hz
4 VA, 2 W

$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient	
Up to 90% RH non-condensing	
Coil to relay contacts	4000 VAC
Pole to pole (45 mm.$)$	2500 VAC
$11-12-14$ to $21-22-24$	
0.22 kg	

$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
condensing

Pole to
0.22 kg

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

100 mm

RMS VOLTAGE MONITORING RELAY
 Type: PMSA

FEATURES

- ALL IN ONE UNIT:

Multi Range from 50 to 830 Volt for use in Singlephase, Two-phase or Three-phase systems with or without Neutral and Ground

- True RMS voltage measurement
* Measures Neutral to Ground voltage and $3 \times$ Phase to Phase or $3 \times$ Phase to Neutral
- Over and Under voltage monitoring with individual relays or window function with $2 \mathrm{C} / \mathrm{O}$ contacts
- One Relay can be dedicated to the Neutral to Ground monitoring
- Easy set-up by keying in actual parameters
- Time delay - On and Off - can be set individually
- Latched Relay function can be selected
- LEDs indicate the status of the relay, latch, timing and display information
- Extremely compact and low power consumption

FUNCTION DIAGRAM

Contact information:

Relay programmed to Type 1: If enabled. Neutral to Ground plus Under voltage: $1 \mathrm{C} / \mathrm{O}$, terminal 11-12-14 Over voltage: $1 \mathrm{C} / \mathrm{O}$, terminal 21-22-24

Relay programmed to Type 2: If enabled. Neutral to ground plus Voltage Window 2 C/O, terminal 11-12-14, 21-22-24

Relay programmed to Type 3:
Under- or Over voltage or Window func.: $1 \mathrm{C} / \mathrm{O}$, term. 11-12-14 Neutral to Ground voltage: 1 C/O, terminal 21-22-24

Description:

The RMS voltage monitoring relay PMSA is a universal $2,3,4$ and 5 wire Multi-voltage unit that measures under as well as over voltages in star or delta configuration. The PMSA is designed to fulfill the demand for one unit for all applications in order to reduce overall costs. The PMSA is build with a strong MCU that can handle 4000013 bit voltage samples/sec for a precise and true RMS conversion.
The two internal relays can be used for Phase and Neutral to Ground voltage measurements, or one relay can be used for Phase measurements and the other relay dedicated for Neutral to Ground measurement.

Operation:

Star connection:
1, 2 or 3 phase with Neutral and an optional Ground. The PMSA is measuring the voltage of each phase against Neutral, or in a 3 phase system an "Internal Neutral" made by a resistor star coupling. Phase to Neutral voltages are individually monitored for under as well as over voltage. Both voltages and differential can be set indvidually. If the Ground "PE" is connected PMSA can monitor the voltage between Neutral and PE and activate an alarm signal if it exceeds a preset limit.
Delta connection:
2 or 3 phase with an optional Neutral and Ground. The PMSA is measuring the voltage of each phase against the other phase(s). The phase to phase voltages are individually monitored for under as well as over voltage. Both voltages and the differential can be set individually. If the Neutral and Ground "PE" is connected PMSA can monitor the voltage between Neutral and PE and activate an alarm signal if it exceeds a preset limit.

General:

The PMSA has two relays working in fail-safe mode. They can be used for an individual over and under voltage alarm or in parallel where they are both pulled in if the phase voltages are within the set limits. If the voltages are within the limits the relays will pull in after the power-up and the on-delay period has elapsed. If a voltage come outside the set limits the relays drop out after the off-delay period has elapsed.
Latch function:
If the relays are set to Latch they will pull in immediately at power-up and remain in until the PMSA after the power-up delay measures a fault and the off-delay has elapsed. After dropping out they will remain out until the PMSA have been reset manually by pressing the S / R button on the unit or by turning off the power supply.

Application:

Generally where humans and equipment have to be protected against unexpected voltages caused by broken wires - especially the Neutral - or voltages that are not within acceptable limits for the connected equipment.

SPECIFICATIONS

INPUT	AC voltage. 45 to 66 Hz
Range	
Connection type 1-3	50 to 480V N-Phase
Connection type 4-5	86 to 830V Phase-Phase
Input resistance	
N-L1, N-L2, N-L3, N-PE	1Mohm
PERFORMANCE PARAMETERS	
DISPLAY RESOLUTION	
Voltage	1 V
Time	1 sec
TIMING	
Measuring Response time	$<100 \mathrm{msec}$. (50 to 90 msec .)
Time range	Separate On and Off delay setting
	$0-99 \mathrm{sec}$.
ELECTRICAL	
Temp. dependence	A/D conversion Typ. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
OUTPUT	
RELAY	$2 \mathrm{C} / \mathrm{O}$ or $2 \times 1 \mathrm{C} / \mathrm{O}$ for separate Over \& Under voltage monitoring or $1 \mathrm{C} / \mathrm{O}$ dedicated for Neutral to Ground monitoring
Contact rating	6 A, 250 VAC, 1500 W, AgNi
Mechanical life	30 million operations
SUPPLY	
Range	18-288 VAC, 20-400 VDC
Fuse	Internal 400 mA in A1
	Breaking capacity $100 \mathrm{~A} / 250 \mathrm{Vdc} / \mathrm{ac}$
Power consumption	Max 4 W
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient
Humidity	Up to $90 \% \mathrm{RH}$ non-condensing
Dieletric test voltage	Coil to relay contacts 4000 VAC
Pole to pole	2500 VAC
Weight	0.17 kg
	International Standards
EMC	EN50263 Product standard for measuring relays and protection equipment
Safety	EN60255 Insulation coordination for measuring relays and protection equipment

Over for Neutral to Ground monitoring 6 A, 250 VAC, 1500 W, AgNi
30 million operations
-25 to +55 C ambient . 90 \% RH non-condensing 2500 VAC EN60255 Insulation coordination for measuring relays and protection equipmen

ORDERING INFORMATION

EXAMPLE:
TYPE
RMS Voltage Relay
ADJUSTMENT
Programmed
HOUSING
Rail mounting
SIZE
45 mm. -
CODE
Code end
Extended code

CONNECTION TYPE 1:
TRMS Voltage is measured from: L 1 to N
and if enabled from N to PE

CONNECTION TYPE 2:

TRMS Voltage is measured from: L 1 to N \& from L 2 to N and if enabled from N to PE

CONNECTION TYPE 3:

TRMS Voltage is measured from: L1 to N \& from L2 to N \& from L3 to N and if enabled from N to PE

CONNECTION TYPE 4
TRMS Voltage is measured from: L1 to L2 and if enabled from N to PE

CONNECTION TYPE 5
TRMS Voltage is measured from: L 1 to $L 2$ \& from $L 2$ to $L 3$ \& from $L 3$ to $L 1$ and if enabled from N to PE. If the Neutral is not connected an internal artificial Neutral will be used for the measurement N to PE

FEATURES

- Fan monitoring (V-belt break)
- Filter monitoring (filter blockage)
- Protection for single and 3-phase lightly loaded motors.
- Current transformer may be connected for $\mathrm{I}_{\mathrm{N}}>10 \mathrm{~A}$
- Suitable for frequency converters
- Voltage range: 1-phase 24-230 V, 3-phase 24-400 V
- Current range 0,5-10 A

LOAD MONITOR

Power Factor $\cos \varphi$
Type: LMCB

Description:

The load monitor determines the phase angle $\cos \varphi$, which is the phase shift between current and voltage of asynchronous motors. The load monitor is directly connected to the motor and no additional sensors are required.

Because the phase angle depends on the motor load, it represents a directly measurable variable for the motor load.

When the actual $\cos \varphi$ passes the set point $\cos \varphi$, the unit wil react by letting the (min) LED blink. After a set period of time, the relay R switches to failure position and the (min) LED is switched on.

If no current flows between L1i and L1k, the $\mathrm{I}=0$ LED will blink until the set value od dealy is reached. Then the LED is switched on

Application:

Load monitoring of pumps and fans and other lightly loaded motors.

Controling the input flow rate at which new material is fed into, for instance, a grinding gear based on the current load status.

Under load monitoring can recognize power transmission faults (for example, when a V-belt breaks) or flow interruptions

FUNCTION DIAGRAM

Overload monitoring

Underload monitoring

INPUT

Rated voltage	1-phase $24-230 \mathrm{~V}$ 3-phase $24-400 \mathrm{~V}$ 0,5 to 10 A
Rated current	
	$0 . \ldots . .0 .9$ adjustable Phase angle $\cos \varphi$
Constant at approx. 3-5\% Hysteresis Operating delay	$0.5 \ldots .160$ sec. adjustable

PERFORMANCE PARAMETERS TIMING
Reset after failure
of supply voltage
Recovery time

OUTPUT
2 changeover contacts for power
Contact voltage
Continous current
Switching capacity
Mechanical life
Electrical life
Contact material
SUPPLY
AC supply range
with transformer

AC frequency range
Power consumption
Duty cycle

250V~(max.: 440V~250V 8 A
$1500 \mathrm{VA}(220 \mathrm{~V}-, \cos \varphi=1)$
$>3 \times 10^{7}$ operations
$>3 \times 10^{5}$ operations (230V~,5A, $\cos \varphi=1$) silver-nickel gold plated

24, 42, 48, 110, 127, 230, 380, 400, 440 V AC $+10 \% \ldots 15 \%$ UN

48 to 63 Hz
2 VA
100%, class 1c

GENERAL
Temperature range $\quad-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambien
Humidity
VDE 0435
VDE 0110 Up to 90 \% RH non-condensing Test voltage 2000V~ Group B 250V~

DIN rail installation in accordance with DIN 46277/3
(European std.EN 50022)
Protection class IP 40 in accordance with VDE 0106 and VBG4
Screw terminals up to $4 \mathrm{~mm}^{2}$, protection rating IP 20
Terminal designation and arrangement in accordance with DIN 46199

Weight
0.14 kg in 45 mm . housing

EMC directive 89/336

Low voltage directive 73/23:

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

FEATURES

- True power monitor for motors and other loads
- Temperature monitoring of motor windings
- Single and symmetric 3-Phase loads
- $0,75 \mathrm{~kW}, 1,5 \mathrm{~kW}, 3 \mathrm{~kW}$ and 6 kW ranges w/o ext. CT
- Min. and max. monitoring with individual or parallel working relays or 2 max. or 2 min . thresholds with individual relays
- Adjustable start-up delay 1-100s
- Off delay 0,1-50s
- Recognition of disconnected load
- Reset Key
- Fault latch
- Supply voltages selectable via power modules

CONNECTION DIAGRAM

Three-phase connection with temperature monitoring. $I_{N}<12 \mathrm{~A}$

Single-phase connection with current transformer and fault latch

DESCRIPTION:

The unit monitors the true power supplied to a single phase or a symmetrical 3 -phase load up to $7,2 \mathrm{~kW}$ without using external current transformers. For a higher resolution the LMWB has 4 ranges. The overload current can be up to 6 or 12A continuously depending on range.

The LMWB has two adjustable set points that can be used for setting either one maximum and one minimum level or two individual min. or max. levels. The status of the load and each level is signalled by separate LED's and output relays.
When the load exceeds the set points an adjustable time delay controls the time from the fault is recognised until the relay drops out. During the delay time the LED related to the set point will indicate the condition by flashing until the relay reacts and the LED being permanently on.

The relays can be latched in their fault position by bridging the terminals Y 1 and Y 2 . The LED's will be on during the time where the relays are latched independently of the actual load status. Releasing the latch can be done by interrupting the power supply or pressing the reset key.
The unit is equipped with a start-up delay in order to suppress error messages during machine start. The delay period starts when supply voltage is applied.

For a complete load protection the LMWB include a temperature monitor that can be used with the standard PTC resistors used in motor windings. The temperature monitor is overriding the load function on relay 2.

FUNCTION DIAGRAM (Further examples in the manual)
Window function (WIN)

Minimum and maximum monitoring

SPECIFICATIONS

INPUT
Waveform Sinus
Measuring voltage
Input resistance, voltage
Measuring Input current
Range $0,75 \mathrm{~kW}, 1,5 \mathrm{~kW}$
Range 3kW, 6kW
Input resistance, current
Detection of disconnected load K
Interruption 0,75kW, 1,5kW
Recognition 0,75kW, 1,5kW
Interruption 3kW, 6kW
Recognition 3kW, 6kW
Temperature monitoring
Release value (Relay off)
Response value (Relay on)
Measuring voltage
Overvoltage category
Rated surge voltage
Fault latch

PERFORMANCE PARAMETERS
Switching threshold P1
Switching threshold P2
Hysteresis
Basic accuracy
Adjustment accuracy
Repetition accuracy
Frequency dependance
Temperature dependence
TIMING
Start up supression time
Tripping delay
Reset time
OUTPUT
Relay
Switching capacity
Fusing
Mechanical life
Electrical life
Switching capacity

Rated surge voltage
SUPPLY
AC supply range

AC frequency range
Reset time
Power consumption
Duty cycle
Overvoltage category
Rated surge voltage
AMBIENT CONDITIONS
Temperature range
Humidity
Pollution degree
Vibration resistance
Shock resistance
MECHANICAL
Housing
Terminals

Mounting

Weight

ORDERING INFORMATION

EXAMPLE:
TYPE
Load monitoring relay
SUPPLY
AC with transformer
SUPPLY VOLTAGE
From 99 to 140 VAC
From 198 to 264 VAC
From 341 to 440 VAC
Other Voltages on request
ADJUSTMENT
Switch and trimpot adjustable
HOUSING
Rail mounting.(internal transformer)
SIZE
$45 \mathrm{~mm} .2 \mathrm{C} / \mathrm{O}$
CODE END

Further examples

$\mathrm{I}=0 \mathrm{ON}$ with minimum monitoring ($2 \mathrm{MIN}+\mathrm{I}=0 \mathrm{ON}$)

I=0 Inv. with minimum monitoring (2MIN + I Inv.)

$\mathrm{I}=0 \mathrm{ON}$ with maximum monitoring ($2 \mathrm{MAX}+\mathrm{I}=0 \mathrm{ON}$)

$\mathrm{I}=0$ with maximum monitoring ($2 \mathrm{MAX}+\mathrm{I}=0$ Inv.)

EN 60715
EN 60947-8
IEC 60068-1
IEC 60068-2-27
IEC 60068-2-6
IEC 60664-1
IEC 60721-3-3 Class 3k3
IEC 60947-5-1

Adjustable 10% to 120% of P_{N}
Adjustable 5% to 110% of P_{N}
1% of max. measuring range
$\pm 2 \%$ of max. scale value
$\leq 5 \%$ of max. scale value
$\pm 2 \%$
$\leq 0,025 \% / \mathrm{Hz}$
$\leq 0,02 \% /{ }^{\circ} \mathrm{C}$
1... 100 s

0,1s...50s
500 ms
$2 \times$ potential free change over contacts $5 \mathrm{~A} / 250 \mathrm{VAC}$ ($\mathrm{w} .>5 \mathrm{~mm}$ airspace betw. units) 5 A, Fast
$>20 \times 10^{6}$ operations
$>2 \times 10^{5}$ operations at 1000 VA resistive load max. $60 / \mathrm{min}$ at 100 VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load IEC 60947-5-1
4kV

12-500VAC (specification on power module) Selectable via power module TR3
Terminals A1-A2 are galvanically separated
50 to 60 Hz (specification on power module)
$>500 \mathrm{~ms}$
3,5 VA (3W)
100\%
III (IEC 60664-1)
4 kV
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient (IEC 60068-1)
$25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ambient (UL 508)
15\% - 85\% RH (IEC 60721-3-3 class 3k3)
3 (IEC 60664-1)
10 to $55 \mathrm{~Hz} 0,35$ (IEC 60069-2-6)
15 g 11 ms (IEC 60068-2-27)

Self-extinguising plastic. IP40
Tightening torque max. 1Nm (PZ1) IP20.
1×4 or $1 \times 0,5$ to $2,5 \mathrm{~mm}^{2}$ with end sleeve $2 \times 2,5$ or $2 \times 0,5$ to $1,5 \mathrm{~mm}^{2}$ with end sleeve DIN rail TS 35 (EN 60715). Any position
0.230 kg in 45 mm . housing
(

12 A (cont. w. $>5 \mathrm{~mm}$ airspace between units)

- 6A
-12A

150 mA
-

Terminals T1-T2
$3,6 \mathrm{k} \Omega$
$<7,5 \mathrm{~V}$ @ $\mathrm{R} \leq 4,0$ (IEC 60947-5-1)
II (IEC 60664-1)
4kV
$1-Y 2$ bridged. Potential equal to measuring cirquit

FEATURES

- Extremely resistant to supply voltage drops
- Up to 15 programmable start attempts
- First timing period either start or pause
- Start and pause time are separatly adjustable
- Free contact for start failure
- LEDs indicate start, pause or start failure
- Small outlines

FUNCTION DIAGRAM

CONNECTION DIAGRAM
Rail mounting
Supply

Starter relay
11, 12, 14
Start failure relay

Description:
The engine starter relay is designed for automatic start of petrol, gas or diesel engines. The relays are provided with a separate alarm contact for start failure.

Operation:

The starter relay is a cyclic timer with independently adjustable time periods t 1 and t 2 making one cycle. The output relay is energized through t 1 and de-energized through t 2 .
If the relay is coded for start first the period t 1 begins when the supply voltage is applied. This is followed by the periods $\mathrm{t} 2, \mathrm{t} 1$, t2 etc. The number of cycles is counted.
If the relay is coded for pause first the period t2 begins when the supply voltage is applied. This is followed by the periods t 1 , $\mathrm{t} 2, \mathrm{t} 1$ etc. The number of cycles is counted.
When the counter has counted to the precoded amount of cycles and the time for the last cycle is expired the relay drops out and the start failure relay pulls in. The start failure relay can be released and the counter reset by removing the power supply.

Application:

Automatic starting of engines driving generators, refrigerators and pumps.

PROGRAMMABLE FEATURES

Socket mounting

Starter relay
1, 3, 4
Start failure relay
11, 8, 9

PERFORMANCE PARAMETERS
PIMING
Time range adjustable 0.5 to 10 sec stat time
ELECTRICAL
Repetition accuracy
Range tolerance
Temp. dependence
Supply dependence

OUTPUT Contact rating Mechanical life

SUPPLY
DC supply range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage
Weight
c
MC directive 89/336

Low voltage directive 73/23
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensing 0.13 kg

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

Coil to relay contacts 4000 VAC Pole to pole (45 mm .) 2500 VAC

ORDERING INFORMATION

EXAMPLE:
TYPE
Engine starter
SUPPLY VOLTAG 24 VDC

ADJUSTMENT
Dipswitch adjustable.
HOUSING
Housing, rail mounting
Housing, socket 11 pin
SIZE
35 mm .
CODE END

$\longleftarrow 45 \mathrm{~mm}$ \qquad

COMBINED STARTER INHIBIT \& OVER-SPEED RELAYS

Type: FRAA for 12 V
Type: FRBA for 24 V

Description:

The starter inhibit \& over-speed relay are designed for automatic start of petrol, gas or diesel engines and to prevent engine damage due to failure in the automatic speed control system.

The relays are very accurate monitoring the frequency from either a magnetic pick-up, a tacho generator or the main generator.

Operation:

When the supply voltage is applied, the LED corresponding to the input frequency (r.p.m.) is switched on. If the frequency (r.p.m.) exceeds the setting the relay pulls in with a time delay of max. 300 msec. When the frequency comes below the setpoint, the relay is de-energized with a delay of approximately 1.5 sec . If the latch function is specified , though, the relay remains energized. The latch function is released by removing the power supply.

Test function:

If the testfunction is included, the over-speed limit can be adjusted by connecting the terminals TE and ST and adjust the limit to normal speed. When the connection TE - ST is removed the r.p.m. setting will be increased with e.g. 10\% again.
Standard test limits over normal speed are $10 \%, 15 \%, 20 \%$ or 25% of setting.

Application:

Automatic starters for engines in generator sets, refrigerators and pump units.

CONNECTION DIAGRAM

Rail mounting

Low range
11, 12, 14
High range
21, 22, 24

SPECIFICATIONS

INPUT	Frequency
	For Namur sensor DIN 19234
	Optocoupler for external 24 VDC supply
	NPN - PNP
	Transformer, 30-500 VAC
Sensitivity	
	Adjustable A version $10-5120 \mathrm{~Hz}$
	$50-100 \%$ of specified range in order code
Max frequency input	approx. 2 x high range
Input resistance	$2.0 \mathrm{k} \Omega$ for 20 V input range
	$20 \mathrm{k} \Omega$ for 100 V input range
	$360 \mathrm{k} \Omega$ for 500 V input range
Min. voltage req.	0.5 V for 20 V input range
	10 V for 100 V input range
	30 V for 500 V input range
PERFORMANCE PARAMETERS	
TIMING	
Response time	Max. 300 msec .
ELECTRICAL	
Temp. dependence	Typ. ± 0.04 \% / ${ }^{\circ} \mathrm{C}$
Supply dependence	Typ. $\pm 0.01 \% / \% \Delta \mathrm{U}$
OUTPUT	Relay, $2 \times 1 \mathrm{C} / \mathrm{O}$
Contact rating	6 A, 250 VAC, 1250 W
Mechanical life	30 Million operations
Optocoupler	
Transistor rating	$10 \mathrm{~mA}, 50 \mathrm{VDC}$
SUPPLY	AC / DC vlotage
Housing 45mm VOX:	Whitout supply module
FRAA	12V AC/DC
FRBA	24 V AC/DC
Voltage range	AC: -20% to $+15 \%$
	DC: -25% to $+33 \%$
Power consumption	$8 \mathrm{VA}, 4 \mathrm{~W}$
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity	Up to 90% RH non-condensing
Dielectric test voltage	Input to supply 3000 VAC
	Coil to relay contacts 4000 VAC
	Relay contact to relay contact 2500 VAC
Weight	0.23 kg
EMC directive 89/336:	EN50081-Emission
	EN50082-Immunity
Low voltage directive 73/23:	EN60255-Electrical Relays

ORDERING INFORMATION

EXAMPLE:
TYPE
FRAA 12 V supply
FRBA 24 V supply
LOW RANGE
INPUT FREQUENCY RANGE
$10-20 \mathrm{H}$
$20-40 \mathrm{~Hz}$

40 - 80 Hz
$80-160 \mathrm{~Hz}$
$160-320 \mathrm{~Hz}$
$320-640 \mathrm{~Hz}$
$640-1280 \mathrm{~Hz}$
$1280-2560 \mathrm{~Hz}$
2560-5120 Hz

HIGH RANGE
INPUT FREQUENCY RANGE

$10-20 \mathrm{~Hz}$	
$20-10 \mathrm{~Hz}$	
$40-80 \mathrm{~Hz}$	
$80-160 \mathrm{~Hz}$	
$160-320 \mathrm{~Hz}$	
$320-640 \mathrm{~Hz}$	
$640-1280 \mathrm{~Hz}$	
$1280-2560 \mathrm{~Hz}$	
$2560-5120 \mathrm{~Hz}$	
INPUT	
Namur	DIN 19234
Optocoupler	NPN - PNP
Transformer	0.5 to 20 V
	10 to 100 V
	30 to 500 V

LATCHING

Relay not latching
Relay latching only LOW RANGE
Relay latching only HIGH RANGE Relay latching LOW and HIGH RANGE
no test
test HIGH RANGE set point - 10%
ADJUSTMENT
Fixed sensitivity
Trimpot. adj.
$45 \mathrm{~mm} .2 \times 1 \mathrm{C} / \mathrm{O}$ - contact DIN RAIL

CODE

Code end
Extended code

OPTOCOUPLER INPUT:

STARTER INHIBIT RELAY
Type: FAAA \& FXAA
OVER-SPEED RELAY
Type: FABA \& FXBA

FEATURES

* Extremely resistant to supply voltage drops
* Insensitive to noise on input line
* Measurement of r.p.m. is based on frequency
* Detects over-speed in less than 300 msec.
* The over-speed setting can be adjusted and tested at normal speed
* Latch function can be specified
* LEDs indicate the state of the input

FUNCTION DIAGRAM

Description:
The starter inhibit relays and the over-speed relays are designed to be used with petrol, gas or diesel engines. FAAA and FXAA are used to inhibit the starter as soon as the engine runs by itself. FABA and FXBA are used to prevent engine damage due to failure in the automatic speed control system.
The relays accurately monitor the frequency from either a magnetic pick-up, a tacho generator or the main generator.

Operation:

When the supply voltage is applied, the LED corresponding to the input frequency (r.p.m.) is switched on. If the frequency (r.p.m.) exceeds the setpoint, the relay pulls in with a time delay of max. 300 msec . At lowest frequency setting.
When the frequency comes below the set point, the relay is deenergized with a delay of approximately 1.5 sec . However if the latch function is specified, the relay remains energized. The latch function is released by disconnecting the power supply.

Test function:
If the test function is included then the over-speed limit can be adjusted by connecting the terminals TE and ST and setting the limit to normal speed. When the connection TE - ST is removed the r.p.m. setting will be increased by e.g. 10% again.
Standard test limits over normal speed are $10 \%, 15 \%, 20 \%$ or 25\%.

Application:

Automatic starters for engines in generator sets, refrigerators and pump units.

Socket mounting

SPECIFICATIONS

0 V \qquad

FEATURES

- Multi function check relay
- Extremely compact
- Rail mounting for easy cabling on the baseplate
- Three wire interface to an optional panel indicator
- Microcontroller and SMD - technic for accurate and reliable function.
- LED indication of bus and generator status

FUNCTION DIAGRAM

CONNECTION DIAGRAM

Description:
The synchro check relay type SYND is a multifunction unit that can be set to both constant or pulse output as well as to enable or disable synchronization to a "dead bus". The unit is designed with a micro controller to monitor the bus and the generator voltage, as well as the phase differential between two grids.

The SYND ensure the right conditions before the connection of the generator to the bus, in order to avoid damage to the generator and malfunction or damage to the connected equipment.

The unit is specially designed for DIN rail mounting on the base of the control box for an easy connection to the two bus systems.

For a front panel indication of the function, the SYND can be connected through a simple three wire digital interface to the optional panel indicator type SYPD.

Operation:

Dead Bus OFF: When the voltage on the Mains Bus, L1-L2, and the Generator Bus, L1-L2, both are above 75% of the nominal value, the SYND will monitor the voltage difference $\Delta \mathrm{V} \%$. As soon as $\Delta \mathrm{V}$ is below the set limit, the SYND will start monitoring the phase difference $\Delta \varphi$. If the phase difference $\Delta \varphi$ is continuously below the set limit during the elapse of the set delay time t_{d} and the voltages still within the limits, the internal relay will pull in for 100 m sec . if pulse output is selected, or stay in as long as the conditions are within the limits for synchronisation.

Dead Bus ON: Be careful when this function is selected. Personal injury can occur if the bus is disconnected for maintenance. Too the load of the generator can be excessive. When the Mains Bus voltage is detected to be under the Dead Bus $V_{D B}$ \% set limit V the Mains Bus is defined to be dead and the internal relay will pull in if the Generator voltage is above 75% of nominal value. The relay will drop out or stay in according to the function setting on the SYPD as described above.

SPECIFICATIONS

inPut
Nominal voltage
Max. input
Input resistance
Voltage range
Frequency range
$U_{\text {bus }}$ low level
U Gen low level
$\mathrm{U}_{\text {Bus }}, \mathrm{U}_{\text {GEN }}$ voltage differential
Delay
Specify from 110 to 500 V
Unom. $\times 1.5$
$2 \mathrm{k} \Omega \times$ Unom.
50% to 130%
35 to 70 Hz
75% fixed
75% fixed
2 to $10 \% / 4$ to 20% adjustable
4 to 20 degrees adjustable
0,2 to 1 sec. adjustable

PERFORMANCE PARAMETERS ELECTRICAL
Supply dependence
Temp. dependence
OUTPUT
Sync pulse delay
Sync pulse relay
Contact rating
Mechanical life
Sync pulse
Output for SYPD indicator

SUPPLY

AC supply
with transformer

DC supply

Frequency range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage
Weight
< 0.01 \% / \% $\Delta \mathrm{U}$ supply
$<0.02 \% /{ }^{\circ} \mathrm{C}$

200 ms . to 1 sec . adjustable
$1 \times \mathrm{C} / \mathrm{O}$
6 A, 250 VAC, 1500 W
30 Million cycles
100 ms . or constant
B7 0 VDC
B8 Digital output
B9 12 VDC
AC voltage, Nominal ± 20 \%
$24 \mathrm{~V}(19,2$ to $28,8 \mathrm{~V})$
$110 \mathrm{~V}(88$ to 132 V$)$ 230 V (184 to 276 V)
400 V (320 to 480 V)
$440 \mathrm{~V}(352$ to 528 V$)$
DC Voltage, Nominal -20 \% to $+33 \%$
12V (From 9,6 to 16V)
24V (From 16 to 32V)
45 to 440 Hz (transformer)
4 VA, 3 W
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90 \% RH non-condensing
Input to AC supply 3750 VAC Coil to relay contacts 3750 VAC 0.28 kg

50 VAC

ADJUSTMENT

Trimpot A adjutable

HOUSING

Rail mounting.(internal transformer)
SIZE
55 mm
CODE END
B110
B230
B400
400

5
C \qquad

EXAMPLE:
TYPE
Syncho Check Relay

OLTAGE BETWEEN PHASES
The first three figures of the
voltage in Volt e.g. 400 V
Followed by:
1 for $V=10.0$ to 99.9
2 for $V=100$ to 999

SUPPLY VOLTAGE
18-360 VDC and 20-240 VAC
99-140 VAC
198-264 VAC
342-484 VAC
374-506 VAC

C
EMC directive 89/336:

Low voltage directive 73/23:

International Standards
EN50081-Emission
EN50082 - Immunity
EN60255 - Electrical Relays

TYPICAL SETTING
$\Delta \mathrm{V} \%$ setting

C1 closing delay	25 mS	50 mS	100 mS	200 mS	400 mS
$\Delta \varphi$ setting	$\pm 15 \mathrm{deg}$.	$\pm 15 \mathrm{deg}$.	$\pm 10 \mathrm{deg}$.	$\pm 7 \mathrm{deg}$.	$\pm 5 \mathrm{deg}$.
DELAY setting	0.5 sec.				
Min. time for 1 rotation $0-360$ deg.	6 sec.	6 sec.	9 sec.	12.86 sec.	18 sec.
Max. frequency diff.	0.17 Hz	0.17 Hz	0.11 Hz	0.08 Hz	0.06 Hz
Max. sync error	16.5 deg.	18 deg.	14 deg.	12.6 deg.	13 deg.

Min. time for 1 rotation
$0-360$ deg. in sec.
Frequency diff. in Hz

Max. sync error in deg.

1 closing delay

DELAY setting
Min. time for 1 rotation 0-360 deg.
ax. frequency diff.
$=\frac{180}{\Delta \varphi \text { setting }} \times$ delay setting
$=\frac{1}{\text { time for } 1 \text { rotation } 0-360 \mathrm{deg} .}$
$=\Delta \varphi$ setting $+\left(\frac{\Delta \varphi \text { setting } \times 2}{\text { DELAY setting }} \times \mathrm{C} 1\right.$ closing delay $)$

PANEL INDICATOR FOR SYNCHRO CHECK RELAY

Type: SYPD

FEATURES

- Remote indication

- Easy three wire connection

- No connection to high voltage

PANEL HOLE

CONNECTION DIAGRAM

Description:

The indicator type SYPD, is designed to give a remote visual indication of the status of two generators or a generator and the mains as registered by the Synchro Check Relay type SYND. For an easy installation, the SYPD is using a three wire serial interface to the SYND. Mechanically, the SYPD is delivered in a standard DIN case 96×96 mm . IP65 can be achieved by use of a silicon rubber cover.

Operation:

The SYPD displays $\mathrm{U}_{\text {bus }}>75 \%$ or a Dead Bus, $\mathrm{U}_{\text {gen }}>75 \%, \Delta \mathrm{~V}<$ limitand $\Delta \varphi<$ limit. The green LEDs are ON when the corresponding values are within the tolerances. When the synchronisation is achieved, the Sync LED, displaying the status of the relay in the SYND, gives a short blink or stays ON, depending on the selected function of the SYND. The difference in frequencies, between the two bus systems, is indicated by a running light on the circular LEDs at the scale centre. The larger the difference in frequency - the higher the velocity of the running light. One revolution per sec. corresponds to one Hz difference. The direction of the running light depends on whether the generator is too fast or too slow to cut in.

Application:

Front panel indication of the status of the two bus systems and the function of the Synchro Check Relay SYND.

Specification:
Box and frame

Base

Temperature range
Humidity
Weight

C

EMC directive 89/336.
Low voltage directive 73/23:

Dimensions as per DIN43700 and DIN 43718 IP52 (IP65) according to IEC 144 and DIN 40050 Heat resistant ABS
Self extinguishing as per UL 94
Glass or Macrolon front
Terminals IP20 max. 2mm
Heat resistant PP0
Self extinguishing as per UL94
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90 \% RH non-condensing
0.24 kg

International Standards
EN50081-Emission
EN50082 - Immunity
EN60255 - Electrical Relays

ORDERING INFORMATION

EXAMPLE:
TYPE
Panel indicator

ISOLATION AMPLIFIER
Type: AISA

FEATURES

- Galvanic separation > 4kV
- 8 programmable input ranges
- 8 programmable output ranges
- Excellent linearity
- Small outlines

CONNECTION DIAGRAM

Rail mounting

OUTPUT CHARACTERISTICS

$$
\begin{array}{ll}
\text { Input: } & 0-20 \mathrm{~mA}, 0-1 \mathrm{~V}, \\
& 0-5 \mathrm{~V}, 0-10 \mathrm{~V}
\end{array}
$$

Output: 0-20 mA, 0-1 V,

$$
0-5 \mathrm{~V}, 0-10 \mathrm{~V}
$$

Input: 4-20 mA, 0.2-1 V, $1-5 \mathrm{~V}, 2-10 \mathrm{~V}$

Output: 0-20mA, 0-1 V,

$$
0-5 \mathrm{~V}, 0-10 \mathrm{~V}
$$

Input: 0-20 mA, 0-1 V,
$0-5 \mathrm{~V}, 0-10 \mathrm{~V}$
Output: 4-20 mA, 0.2-1 V,
1-5V,2-10V

Input: 4-20mA, 0.2-1 V, 1-5V, 2-10 V

Output: 4-20 mA, 0.2-1 V, $1-5 \mathrm{~V}, 2-10 \mathrm{~V}$

INPUT			
Programmable with dipswitch	Range		
	$0-20 \mathrm{~mA}$	Max. inpu	100
	$4-20 \mathrm{~mA}$	Max. inpu	100
	$0-1 \mathrm{~V}$	Max. inpu	50
	0.2-1 V	Max. inpu	50
	$0-5$	Max. inpu	50
	$1-5 \mathrm{~V}$	Max. inpu	50
	0-10 V	Max. inpu	50
	$2-10 \mathrm{~V}$	Max. inpu	50
Adjustable type "A"			
Offset potmeter.	$\pm 100 \%$ off full scale.		
Gain potmeter.	10-110\% off full scale.		
Input resistance			
Voltage	Approx. $28 \mathrm{k} \Omega$		
Current	10Ω		
PERFORMAMCE PARAMETERS			
TIMING			
Response time	< 100 msec .		
ELECTRICAL			
Precision	Class 0.5 according to DIN / EN60688		
Linearity	<0,2 \%		
Ripple	< 0.5 \% pp		
Temp. dependence	$\pm 0.05 \% / \%{ }^{\circ} \mathrm{C}$		
Supply dependence	± 0.01 \% / \% $\Delta \mathrm{U}$		
OUTPUT			
Programmable with dipswitch	Range	Load	
	$0-20 \mathrm{~mA}$	Max. Ω	500
	$4-20 \mathrm{~mA}$	Max. Ω	500
-	$0-1 \mathrm{~V}$	Min. Ω	100
$\square \square \square \square$	0.2-1 V	Min. Ω	100
	$0-5 \mathrm{~V}$	Min. Ω	250
	$1-5 \mathrm{~V}$	Min. Ω	250
	$0-10 \mathrm{~V}$	Min. Ω	1000
	$2-10 \mathrm{~V}$	Min. Ω	1000

The output amplifier is protected against open and short circuit.

SUPPLY

AC and DC
with isolated switchmode supply
AC supply range
with transformer

Frequency range
Power consumption

GENERAL

Temperature range
Humidity
Dielectric test voltage

Dielectric test voltage

Weight
24 V (From 20 to 28 V)
110 V (From 99 to 140 V) 230 V (From 198 to 264 V) 400 V (From 342 to 484 V)

45 to 440 Hz (transformer) 2.5 VA, 1.1 W
c
EMC directive 89/336:

Low voltage directive 73/23
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensing
Between input and output 3000 VAC 4000 VAC Between supply and output 4000 VAC 0.12 kg

International Standards
EN50081 - Emission
EN50082-Immunity
EN60255 - Electrical Relays
EN60688 - Measuring transducers

mV TRANSMITTER

Type: AISB

Description:

The mV transmitter is designed to convert low level noise sensitive signals into high level signals and improve the noise immunity by adding a galvanic separation.
AISB is build with a linearized optic transmission for high accuracy. The mV transmitter is a version of the isolation amplifier.

Application:

The mV transmitter is designed for the transmission of signals from distant sensors to the control room or for interface between sensor and PC or PLC. Sensors can be of any kind like: Shunt, measuring bridges or used in weight cells or in temperature units

CONNECTION DIAGRAM

Rail mounting

OUTPUT CHARACTERISTICS

Input: $0-50 \mathrm{mV}, 0-60 \mathrm{mV}$,
$0-100 \mathrm{mV}, 0-150 \mathrm{mV}$
Output: 0-20mA, 0-1 V,

$$
0-5 \mathrm{~V}, 0-10 \mathrm{~V}
$$

Input: $0-50 \mathrm{mV}, 0-60 \mathrm{mV}$,
$0-100 \mathrm{mV}, 0-150 \mathrm{mV}$
Output: 4-20 mA, 0.2-1 V,
1-5V,2-10 V

SPECIFICATIONS

INPUT			
Programmable with dipswitch	Range		
		Max. inpu Max. inpu Max. inpu Max. inpu	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$
Adjustable type "A"			
Offset potmeter.	$\pm 100 \%$ off full scale.		
Gain potmeter.	10-110\% off full scale.		
Input resistance			
Voltage	Approx. $28 \mathrm{k} \Omega$		
Current	10Ω		
PERFORMANCE PARAMETERS			
TIMING			
Response time	$<100 \mathrm{msec}$.		
ELECTRICAL			
Precision	Class 0.5 according to DIN / EN60688		
Linearity	< 0,2 \%		
Ripple	< 0.5 \% pp		
Temp. dependence	$\pm 0.05 \% / \%{ }^{\circ} \mathrm{C}$		
Supply dependence	$\pm 0.01 \% / \% \Delta U$		
OUTPUT			
Programmable with dipswitch	Range	Load	
	$0-20 \mathrm{~mA}$	Max. Ω	500
	$4-20 \mathrm{~mA}$	Max. Ω	500
	$0-1 \mathrm{~V}$	Min. Ω	100
$\cdots \square$	$0.2-1 \mathrm{~V}$	Min. Ω	100
$\square \square$	$0-5 \mathrm{~V}$	Min. Ω	250
	$1-5 \mathrm{~V}$	Min. Ω	250
	0-10 V	Min. Ω	1000
	$2-10 \mathrm{~V}$	Min. Ω	1000

The output amplifier is protected against open and short-circuit.

SUPPLY
with isolated switchmode supply

AC supply range
with transformer

Frequency range
Power consumption

GENERAL

Temperature range
Humidity
Humidity
Dielectric test voltage

Weight
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90 \% RH non-condensing
Between input and output 3000 VAC Between input and supply 4000 VAC Between supply and output 4000 VAC 0.12 kg

24 V (From 20 to 28 V) 110 V (From 99 to 140 V) 230 V (From 198 to 264 V) 400 V (From 342 to 484 V)

45 to 440 Hz (transformer)
2.5 VA, 1.1 W

C $\boldsymbol{\epsilon}$
EMC directive 89/336:

Low voltage directive 73/23
nternational Standards
EN50081 - Emission
EN50082-Immunity
EN60255 - Electrical Relays EN60688 - Measuring transducers

ISOLATION AMPLIFIER

Type: UISA and UISB

FEATURES

- Galvanic separation $>\mathbf{4 k V}$
- 16 programmable input ranges
- 8 programmable output ranges
- Excellent accuracy and linearity

CONNECTION DIAGRAM

Rail mounting

OUTPUT CHARACTERISTICS

Output: 0-20mA, 0-1 V, $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$

Output: 4-20 mA, 0.2-1 V, $1-5 \mathrm{~V}, 2-10 \mathrm{~V}$

Description:

The isolation amplifier UISA is developed to meet high demands for accuracy, quality and flexibility. With 16 selectable DC voltage inputs and 8 selectable standard outputs, it covers a broad range of applications. As an option, the units can be supplied with adjustable gain and offset. The gain adjustment can be set to expand 10\% of the input range to the full output range, and the offset can offset the range up to $\pm 100 \%$. By using the full offset an increasing signal on the input, can be converted to a decreasing signal on the output. UISB is a reduced version with 4 to 20 mA output only.

Operation:

By means of a high performance linearized optic transmission (class. 0.2), the input and the output is galvanic separated with an isolation voltage of more than 4 kVac . The UISA and UISB is designed to be used with a range of dc and ac supply voltages, that all include galvanic isolation of more than 4 kVac from the supply to both the Input and the output circuitry.

Application:

To interface and monitor DC voltages and convert the actual voltage to a standard signal being used as an input to a PC, a PLC or any other electronic device for control or alarm purpose.

PROGRAMMABLE FEATURES

SPECIFICATIONS

INPUT
Programmable with dipswitch Version 3048

Adjustable type "A"
Offset potmeter.
Gain potmeter.
Input resistance

PERFORMAMCE PARAMETERS TIMING					
Response time	< 100 msec.				
ELECTRICAL					
Precision	Class 0.5 according to DIN / EN60688				
Linearity	< 0,2 \%				
Ripple	< 0.5 \% pp				
Temp. dependence	$\pm 0.05 \% / \%{ }^{\circ} \mathrm{C}$				
Supply dependence	$\pm 0.01 \% / \% \Delta U$				
OUTPUT					
Programmable with	Range			Load	
	0 -	- 20		Max. Ω	500
	4	- 20		Max. Ω	500
	0 -	- 1		Min. Ω	100
	0.2	- 1		Min. Ω	100
$\square \square \square$	0	- 5		Min. Ω	250
		- 5		Min. Ω	250
	0	- 10		Min. Ω	1000
		- 10	V	Min. Ω	1000

The output amplifier is protected against open and short circuit.

SUPPLY

AC and DC
8-360 VDC and 20-264 VAC
with isolated switchmode supply
AC supply range
with transformer

Frequency range
Power consumption
2.5 VA, 1.1 W

GENERAL
Temperature range
Humidity
Dielectric test voltage

Weight
24 V (From 20 to 28 V)
110 V (From 85 to 127 V) 230 V (From 187 to 264 V) 400 V (From 323 to 457 V)

45 to 440 Hz (transformer)

C

EMC directive 89/336:

Low voltage directive 73/23.
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensing Between input and output 4000 VAC Between input and supply 4000 VAC Between supply and output 4000 VAC 0.12 kg

International Standards
EN50081-Emission
EN50082 - Immunity
EN60255 - Electrical Relays
EN60688 - Measuring transducers

FEATURES

- Loop powered isolator
- Input 4,8-24V and 6-30V
- Prevents interference from electrostatic fields and ground loops
- Working voltage up to 1000 Vrms
- Transient overvoltage up to $8000 \mathrm{~V}_{\text {peak }}$
- Excellent linearity
- Small outlines, $17,5 \mathrm{~mm}$. wide

CONNECTION DIAGRAM

Rail mounting

Description:

The loop isolator is designed to convert a voltage signal on the input into a 4-20mA current output. The use of a galvanic separation between the input and the output prevents signal distortion and instrumentation damages due to electrical noise, voltage spikes and ground loop currents. The UIDA does not need an external supply, as the input is powered from the voltage source and the output is powered from the loop. The insulation is based on a high performance linear optocoupler with an excellent linearity and a low coupling capacitance.

Application:

For use in instrumentation with current loop I/O as used by PLCs, sensors, recorders, indicators, alarm units etc.

FUNCTION DIAGRAM

INPUT/OUTPUT CHARACTERISTICS

Input: 4,8-24V or 6-30V
Output: 4-20mA

VOLTAGE CONVERTER

AND LOOP ISOLATOR
Type: UIDA
c ϵ
EMC directive 89/336:

Low voltage directive 73/23

International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays

GENERAL

Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity	Up to $90 \% \mathrm{RH}$ non-condensing
Weight	0.044 kg

Weight

Up to 90% RH non-condensing 0.044 kg

YP

INPUT
Max. range A

30 V

OUTPUT
-
Rail mounting
17.5

CODE END

BS7002;
BS EN60950; 1992
EN41003; 1991

FEATURES

- 3 Loop isolators 4-20 mA in one unit
- Prevent lightning from spreading over the system
- Working voltage max.: 1000 Vrms $^{\text {- }}$
- Transient overvoltage max.: 8000 Veak $^{\text {pea }}$
- Excellent linearity
- Small outlines, 35 mm . wide

Description:

The loop isolator is designed to separate a 4-20 mA loop into two galvanically separated 4-20 mA loops in order to prevent signal distortion and instrumentation damages due to electrical noise or voltage spikes and ground loop currents.
The insulation is based on a high performance linear optocoupler with an excellent linearity and a low coupling capacitance.

Application:

For use in instrumentation with current loop I/O as used by PLCs, sensors, recorders, indicators, alarm units etc.

FUNCTION DIAGRAM

INPUT/OUTPUT CHARACTERISTICS

Input: 4-20 mA

Output: 4-20 mA

general

Temperature range
Humidity
Weight

C

EMC directive 89/336:
ow voltage directive 73/23:
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensing 0.12 kg

TYPE

HOUSING
Rail mounting

35 mm
CODE END

FEATURES

- 4-20 mA Loop powered isolator
- Prevent lightning from spreading over the system
- Working voltage up to 1000 Vrms $^{\text {r }}$
- Transient overvoltage up to $8000 \mathrm{~V}_{\text {peak }}$
- Excellent linearity
- Small outlines, $17,5 \mathrm{~mm}$. wide

CONNECTION DIAGRAM

Rail mounting

Description:

The loop isolator is designed to separate one 4-20 mA loop into two galvanically separated 4-20 mA loops in order to prevent signal distortion and instrumentation damages due to electrical noise, voltage spikes and ground loop currents.
The insulation is based on a high performance linear optocoupler with an excellent linearity and a low coupling capacitance.

Application:

For use in instrumentation with current loop I/O as used by PLCs, sensors, recorders, indicators, alarm units etc

FUNCTION DIAGRAM

INPUT/OUTPUT CHARACTERISTICS

Input: 4-20 mA

Output: 4-20 mA

$\theta \theta \theta \theta \theta \theta$	
B1 $\mathrm{B}^{\text {2 }}$ B3 3	
SPPLY	
Ont	
123456	
+ $1-1$ \| ${ }^{\text {a }}$	\|A2
$\theta \theta \theta \theta \theta \theta$	

$\longmapsto 35,0 \mathrm{~mm}-$

$100,0 \mathrm{~mm}$

FEATURES

- Standard dual range. Current: 1A and 5A or Voltage: 250 V and 500 V
- All ranges class 0.5 according to EN60688. Class 0.2 on request
- 8 outputs available on IAMA and UAMA
- Isolation $>4 \mathrm{kV}$. Input, output and supply.
- All standard AC voltages for power supply. Combined AC and DC supply as option
- Version with plug-in supply modules for easy stocking

FUNCTION DIAGRAM
AC Supply

Standard range	B1-B2/B3 IAMx	$0-1 \mathrm{~A} / 5 \mathrm{~A}$
	B1-B2/B3 UAMx	$0-250 \mathrm{~V} / 500 \mathrm{~V}$
Other ranges		
	B1-B3 IAMx	$0-0.5$ to 10A
	B1-B3 UAMx	$0-10 \mathrm{~V} / 500 \mathrm{~V}$

OUTPUT CHARACTERISTICS

Input: $0-x x x$ A
$0-x x x \vee$
Output: $0-10 \mathrm{~mA}, 0-20 \mathrm{~mA}$ $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$

$\begin{aligned} \text { output: } & 2-10 \mathrm{~mA}, 4-20 \mathrm{~mA}, \\ & 1-5 \mathrm{~V}, 2-10 \mathrm{~V}\end{aligned}$

CONNECTION DIAGRAM

Rail mounting

Description:

The transducers type IAMA for current and UAMA for voltage are developed to meet high demands for quality and by offering 8 selectable outputs it covers a broad range of applications. IAMB and UAMB are reduced versions with 4 to 20 mA output only.

Operation:

The input current or voltage is, by means of a high-grade transformer (class. 0.2) with an isolation voltage of more than 4 kV , galvanic isolated from the transducer circuitry and the output. After the transformer the measured signal is rectified, averaged and corresponding to the DIP-switch settings, converted to the required current or voltage output signal.

Application:
PLC, PC and microprocessor controlled Instrumentation.

AC/DC Supply

Socket mounting

SPECIFICATIONS

INPUT IAMA, IAMB	AC current
Nominal input $I_{\text {N }}$	Specify from 0,5 to 10 A
Max. continuous input	$1,5 \times \mathrm{I}_{\mathrm{N}}$ or max. 10 A
	$20 \times \mathrm{I}_{\mathrm{N}}$ in 1 sec .
Input resistance approx.	$0.05 \mathrm{~W} / \mathrm{I}_{\mathrm{R}}$
AC frequency range	45 to 65 Hz
INPUT UAMA, UAMB	AC voltage
Nominal input V_{N}	Specify from 10 to 600 V
Max. continuous input	$40 \sqrt{U_{N}} \mathrm{~V} \text { rms. } 10 \mathrm{~V}<U_{N}<300 \mathrm{~V}$
Input resistance approx.	$2 \mathrm{KW} / \mathrm{V}$
AC frequency range	45 to 65 Hz
PERFORMANCE PARAMETERS	
TIMING	
Response time	< 200 msec. $0-90 \%$ or 100-10\%
ELECTRICAL	
Precision	Class 0.5
Linearity	< 0.2 \%
Supply dependence	< ± 0.01 \% / \% $\Delta \mathrm{U}$ supply
Temp. dependence	$< \pm 0.01 \% /{ }^{\circ} \mathrm{C}$
Ripple	< 1 \% pp
OUTPUT	
The output amplifier is protected against open and short circuit.	
SUPPLY	
AC and DC	18-360 VDC and 20-264 VAC
With isolated switchmode supply	
AC Supply	
Transformer supply	24, 48, 110, 230, 400, 460 V
Voltage range	- 20 \% to + 20 \%
Frequency range	45 to 440 Hz
Power consumption	$4 \mathrm{VA}, 3 \mathrm{~W}$
GENERAL	
Temperature range	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity	Up to 90 \% RH non-condensing
Dielectric test voltage	Input to output 4000 VAC
	Input to supply (internal) 4000 VAC
	Output to supply (internal) 4000 VAC
Weight	0.20 kg with internal supply
	0.10 kg with plug-in supply module
C	
\leqslant	International Standards
EMC directive 89/336:	EN50081-Emission
	EN50082-Immunity
Low voltage directive 73/23:	EN60255 - Electrical Relays
	EN60688-Measuring transducers

ORDERING INFORMATION

EXAMPLE:
TYPE
Current measuring transducer

Voltage measuring transducer

CURRENT RANGE - IAMA \& IAMB Standard 0-1A \& 0-5A

Specified current xxxY
$\mathrm{Y}=$ Multiplier $\quad 0=x 1.0$
e.g. 0-1.5 A
e.g. $0-500 \mathrm{~mA}$

VOLTAGE RANGE - UAMA \& UAMB
Standard 0-250 V \& $0-500 \mathrm{~V}$
Specified Voltage xxxY
$Y=$ Multiplier2=x 100
e.g. 0-150 V
e.g. 0-60V

SUPPLY VOLTAGE
18-360 VDC and 20-264 VAC 19,2-28,8 VAC
38,4-57,6 VAC
88-132 VAC
184-276 VAC
342-484 VAC
368-552 VAC
ADJUSTMENT
nput offset \& gain fixed

HOUSING

Rail mounting with internal supply
Socket 11 pin with internal supply

SIZE
35 mm

CODE
Code end
Extended code

$-35,0 \mathrm{~mm} \longrightarrow$

$\longmapsto 105,0 \mathrm{~mm}$

FREQUENCY MEASURING TRANSDUCER

Type：FAMA

FEATURES

－High input resistance
－Low response time
－Excellent linearity
－All ranges class 0.5 according to EN60688．
－ 8 outputs available
－Isolation $>4 \mathrm{kV}$ ．Input，output and supply．
－All standard AC voltages for power supply． Optional combined AC and DC supply．

Description：

The transducer type FAMA is used to measure the frequency of an input voltage．The output is a load independent DC voltage or current signal．The input can be connected directly or via transformers．

Operation：

The input voltage is transformed to a suitable signal level．At each zero－crossing the input creates a rectangular pulse with a constant height and width．The pulse train，with a frequency proportional to that of the input voltage，is filtered and in amplifier converted to a load independent DC output．The input voltage can also be used as supply voltage．The supply voltage is galvanically separated by the plug－in transformer．

Applications：
Instrumentation，PLCs，PC and microprocessor control systems

AC／DC Supply

OUTPUT	－ロロロ	ACTUATOR ■
0－10 mA	－$\square_{\text {回 }}$	
2－10 mA		
0－20mA		
4－20mA		
0－5v	日日回	
1.5 v	日回昌	
0－10 v	日日回	
2－10 v	日日日回	

Socket mounting

SPECIFICATIONS

INPUT FAMA
Nominal input V_{N}
Max. continuous input
Input resistance
AC frequency range

AC voltage

Specify from 10 to 600 V
$40 \mathrm{U}_{\mathrm{N}} \mathrm{V}$ rms. $10 \mathrm{~V}<\mathrm{U}_{\mathrm{N}}<300 \mathrm{~V}$
720 V rms. $\mathrm{U}_{\mathrm{N}}>300 \mathrm{~V}$
approx. $2 \mathrm{~K} \Omega / \mathrm{V}$
0 to 5000 Hz
PERFORMANCE PARAMETERS
TIMING

Response time
ELECTRICAL
Precision
inearity
Supply dependence
Temp. dependence
Ripple
< 200 msec. $0-90 \%$ or $100-10 \%$

Class 0.5

<0.2 \%
$< \pm 0.01$ \% / \% DU supply
$< \pm 0.01 \% /{ }^{\circ} \mathrm{C}$
< 1 \% pp

OUTPUT

The output amplifier is protected against open and short circuit.

SUPPLY

AC and DC
18-360 VDC and 20-264 VAC
with isolated switchmode supply
AC supply range $\quad 24 \mathrm{~V}$ (From 20 to 28 V) with transformer $\quad 110 \mathrm{~V}$ (From 99 to 140 V) 230 V (From 198 to 264 V) 400 V (From 342 to 484 V)

Frequency range
Power consumption
Frequency range
Power consumption
45 to 440 Hz (transformer)
$2.5 \mathrm{VA}, 1.1 \mathrm{~W}$
45 to 440 Hz
2.5 VA, 1.5 W

PLUG-IN supply module According to specifications

GENERAL

Temperature range
Humidity
Dielectric test voltage

Weight
$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Up to 90% RH non-condensing
Input to output 4000 VAC
Input to supply (internal) 4000 VAC Output to supply (internal) 4000 VAC
0.20 kg with internal supply

International Standard
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays
EN60688 - Measuring transducers
ORDERING INFORMATION

EXAMPLE:
TYPE
Frequency measuring transducer

FREQUENCY RANGE

Lower level
The first three figures of the
frequency in Hz , e.g. 45.0 Hz
Followed by:
0 for $\mathrm{Hz}=1.00$ to 9.99
1 for $\mathrm{Hz}=1.00$ to 9.99
1 for $=10.0$ to 99.9
2 for $\mathrm{Hz}=100$ to 999
High level
The first three figures of the frequency in Hz, e.g. 55.0 Hz

Followed by:
0 for $\mathrm{Hz}=1.00$ to 9.99
1 for $\mathrm{Hz}=10.0$ to 99.9
2 for $\mathrm{Hz}=100$ to 999

VOLTAGE RANGE
The first three figures of the
voltage in Volt, e.g. 400 V

Followed by:
1 for $V=10.0$ to 99.9
2 for $V=100$ to 999

SUPPLY VOLTAGE
18-360 VDC and 20-264VAC
20-28VAC
99-140VAC
198-264VAC
198-264VAC
342-484VAC

OUTPUT
Programmable with dipswitch
$0-10 \mathrm{~mA}, 2-10 \mathrm{~mA}$,
0-20 mA, 4-20 mA,
$0-5 \mathrm{~V}, 1-5 \mathrm{~V}$
$0-10 \mathrm{~V}, 2-10 \mathrm{~V}$

HOUSING

Rail mounting with internal supply Socket 11 pin with internal supply

SIZE

35 mm .
CODE
Code end
Extended code

FAMA 450155014002 B 230DA3C

\qquad

400

E400
B024
B110
B110
B230
B400

D

$\longmapsto 55 \mathrm{~mm} \xrightarrow{\longrightarrow}$

\qquad

FEATURES

- Small outlines
- High input sensitivity
- Low response time
- Excellent linearity
- 19 outputs available
- According to EN60688

Description:

The input transformers for voltage and current separate the inputs galvanically from the converter. The signals are amplified to suitable levels and led to the multiplier. The multiplication is made by changing the voltage signal to a pulse-width modulated square wave, and the current to a voltage signal representing the amplitude of the current, thus giving a pulse area equal to the actual momentary power. Using a high frequency for the square pulses ensures an accurate measurement even with a high level of signal distortion (higher harmonics). The signal from the multiplier passes an active filter and an output circuit to ensure a low ripple and stable output signal. Output signals are short-circuit and open-circuit protected.

FUNCTION DIAGRAM

U - Supply

U - in

1 - in

CONNECTION DIAGRAM

Rail mounting

WACA \& WRCA

WADA \& WRDA

SPECIFICATIONS

INPUT	
Nominal voltage	Specify from 100 to 700 V
Max. input	$1.2 \times \mathrm{U}_{\mathrm{N}}$
Input resistance	$300 \mathrm{k} \Omega \mathrm{Uin}<200 \mathrm{~V}$
	$500 \mathrm{k} \Omega \mathrm{Uin}>200 \mathrm{~V}$
Current	
Nominal current	1 A (from $\ldots / 1 \mathrm{~A}$ current transformer)
Or	5 A (from $\ldots / 5 \mathrm{~A}$ current transformer)
Max. input	$1.2 \times \mathrm{I}_{\mathrm{N}}$ constant
Type .../1 A	$5 \times \mathrm{I}_{\mathrm{N}}$ for 10 sec.
Type .../5 A	$50 \times \mathrm{I}_{\mathrm{N}}$ for 1 sec.
Input resistance	$50 \mathrm{~m} \Omega$
Type $\ldots / 1 \mathrm{~A}$	$5 \mathrm{~m} \Omega$
Type $\ldots / 5 \mathrm{~A}$	
PERFORMANCE PARAMETERS	
TIMING	$<200 \mathrm{msec}$.
Response time	
ELECTRICAL	Class 0.5
Precision	$<0.1 \%$
Linearity	$< \pm 0.01 \% / \% \Delta \mathrm{U}$ supply
Supply dependence	$< \pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Temp. dependence	$<1 \% \mathrm{pp}$
Ripple	

OUTPUT
All output types are protected against short-circuit and opencircuit. Max. loads for accurate operation are shown in ordering information.

SUPPLY

CHOISE OF CURRENT TRANSFORMER
1 - phase: $\frac{\text { Watt (or VAr) }}{U \text { (nom. voltage) } \times \cos \varphi}=$ current

3 - phase: $\frac{\text { Watt (or VAr) }}{U \text { (nom. voltage) } \times \cos \varphi} \times 0.577=$ current in one phase

Chose your current transformer to the next standard above.
Standard tranducer:
Full output Unom. $\times 1$ (nom. current) $\times 1(\cos \varphi=1)$
Calculation of full output in Watt:
1 - phase: Unom. x 1 (nom. current) $\times 1(\cos \varphi=1)$
3 - phase: Unom. $x 1$ (nom. current) $\times 1(\cos \varphi=1) \times \sqrt{3}$

ORDERING INFORMATION

EXAMPLE:
TYPE
Power measuring transducer
Active power
Reactive power
1 - phase (only active power)
3 - phase 3 \& 4 wire symmetrical load
3 - phase 3 wire asymmetrical load ("Aron" coupling)
3 - phase $3 \& 4$ wire asymmetrical load
LOAD (Watt - VAr)
The first three figures of the
load in Watt or VAr, e.g. 250 kW
Followed by:
2 for $\mathrm{W} / \mathrm{VAr}=100$ to 999
3 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{k} \quad$ to 9.9
4 for $\mathrm{W} / \mathrm{VAr}=10 \mathrm{k}$ to 99.9
4 for $W / V A r=10 \mathrm{k}$ to 99.9
5 for $W / V A r=100 \mathrm{k}$ to 999
6 for $\mathrm{W} / \mathrm{VAr}=1 \mathrm{M} 00$ to 9.99

VOLTAGE BETWEEN PHASES
SINGLE PHASE - PHASE VOLTAGE
The first three figures of the
voltage in Volt, e.g. 400 V
Followed by:
2 for $V=100$ to 999

CURRENT TRANSFORMER PRIMARY NOMINAL
The first three figures of the
current in Ampere, e.g. 200 A
Followed by:
CURRENT WITH .../1 A.
0 for $A=1.00$ to 9.99
for $A=10.0$ to 99
1 for $A=10.0$ to 99.9
2 for $A=100$ to 999
3 for $A=1 \mathrm{k}$ to 9.99 k
3 for $A=1 \mathrm{k}$ to 9.99 k
CURRENT WITH .../5 A.
CURRENT WITH .../5
4 for $A=1.00$ to 9.99
4 for $A=1.00$ to 9.99
5 for $A=10.0$ to 99.9
5 for $A=10.0$ to 99.9
6 for $A=100$ to 999
7 for $\mathrm{A}=1 \mathrm{k}$ to 9.99 k

50 Hz
50 Hz
OUTPUT SPECIFICATION

COUPLINGS FOR MEASURING ACTIVE POWER

1 PHASE

3 PHASE, 3 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE SYMMETRICAL LOAD

3 PHASE, 3 WIRE ASYMMETRICAL LOAD

3 PHASE, 3 or 4 WIRE ASYMMETRICAL LOAD

COUPLINGS FOR MEASURING REACTIVE POWER

3 PHASE, 3 or 4 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE ASYMMETRICAL LOAD

FEATURES

- Small outlines
- High input sensitivity
- Low response time
- Excellent linearity
- 19 outputs available
- According to EN60688

Description:

The input transformers for voltage and current separate the inputs galvanically from the converter. The signals are amplified to suitable levels and led to the multiplier. The multiplication is made by changing the voltage signal to a pulse-width modulated square wave, and the current to a voltage signal representing the amplitude of the current, thus giving a pulse area equal to the actual momentary power. Using a high frequency for the square pulses ensures an accurate measurement even with a high level of signal distortion (higher harmonics). The signal from the multiplier passes an active filter and an output circuit to ensure a low ripple and stable output signal. Output signals are short-circuit and open-circuit protected.

FUNCTION DIAGRAM

U - Supply

U-in

I- in

CONNECTION DIAGRAM

Rail mounting

WBCA \& WSCA

WBDA \& WSDA

SPECIFICATIONS

INPUT	
Nominal voltage	Specify from 100 to 700 V
Max. input	$1.2 \times \mathrm{U}_{\mathrm{N}}$
Input resistance	$300 \mathrm{k} \Omega$ Uin < 200 V
	$500 \mathrm{k} \Omega$ Uin > 200 V
Current	
Nominal current	1 A (from .../1 A current transformer)
Or	5 A (from .../5 A current transformer)
Max. input	$1.2 \times \mathrm{I}_{\mathrm{N}}$ constant
Type .../1 A	$5 \times \mathrm{I}_{\mathrm{N}}$ for 10 sec .
Type .../5 A	$50 \times \mathrm{I}_{\mathrm{N}}$ for 1 sec .
Input resistance	
Type .../1 A	$50 \mathrm{~m} \Omega$
Type .../5 A	$5 \mathrm{~m} \Omega$
PERFORMANCE PARAMETERS TIMING	
Response time	<200 msec.
ELECTRICAL	
Precision	Class 0.5
Linearity	< 0.1 \%
Supply dependence	< ± 0.01 \% / \% $\Delta \mathrm{U}$ supply
Temp. dependence	$< \pm 0.02$ \% / ${ }^{\circ} \mathrm{C}$
Ripple	< 1 \% pp

OUTPUT
All output types are protected against short-circuit and open-
circuit. Max. loads for accurate operation are shown in ordering
information. information.

SUPPLY

	24 V (From 20 to 28 V)	
AC supply range		
with transformer	110 V (From 99 to 140 V)	
	230 V (From 198 to 264 V)	
	400 V (From 342 to 484 V)	

C
EMC directive 89/336:

Low voltage directive $73 / 23$:
International Standards
EN50081 - Emission
EN50082 - Immunity
EN60255 - Electrical Relays
EN60688 - Measuring transducer

CHOISE OF CURRENT TRANSFORMER

3 - phase: $\frac{\text { Watt (or VAr) }}{\mathrm{U} \text { (nom. voltage) } \times \cos \varphi} \times 0.577=$ current in one phase

Chose your current transformer to the next standard above.
Standard tranducer:
Full output Unom. X 1 (nom. current) $\times 1$ ($\cos \varphi=1$)
Calculation of full output in Watt:
1 - phase: Unom. x 1 (nom. current) $\times 1(\cos \varphi=1)$
3 - phase: Unom. $x 1$ (nom. current) $\times 1(\cos \varphi=1) \times \sqrt{ } 3$

ORDERING INFORMATION

EXAMPLE:
TYPE
Power measuring transducer
Active power
Reactive power
1 - phase (only active power)

- phase 3 \& 4 wire symmetrical load

3 - phase 3 wire asymmetrical load ("Aron" coupling)
3 - phase $3 \& 4$ wire asymmetrical load
VOLTAGE BETWEEN PHASES
SINGLE PHASE - PHASE VOLTAGE
The first three figures of the
voltage in Volt, e.g. 400 V
Followed by:
2 for $V=100$ to 999

CURRENT TRANSFORMER PRIMARY NOMINAL
CURRENT WITH .../1 A
CURRENT WITH .../5 A
FREQUENCY e.g. $\mathbf{5 0 H z}$
50 Hz
60 Hz
OUTPUT SPECIFICATION

			Min. k Ω	$\begin{aligned} & \operatorname{Max} . \\ & \mathrm{k} \Omega \end{aligned}$		
0	to	$\pm 1 \quad \mathrm{~V}$	0.1		A	
	0	to ± 2.5	V	0.25	B	
0	to	$\pm 5 \quad \mathrm{~V}$	0.5		C	
	0	to ± 7.5	V	0.75	D	
0	to	$\pm 10 \mathrm{~V}$	1		E	
0.2	to	1 V	0.1		F	
0.5	to	2.5 V	0.25		G	
1	to	5 V	0.5		H	
2	to	10 V	1		I	
0	to	$\pm 1 \mathrm{~mA}$		10	J	
0	to	$\pm 2.5 \mathrm{~mA}$		2.5	K	
0	to	$\pm 5 \mathrm{~mA}$		2	L	
0	to	$\pm 10 \mathrm{~mA}$		1	M	
0	to	$\pm 20 \mathrm{~mA}$		0.5	N	
0.2	to	1 mA		10	0	
0.5	to	2.5 mA		2.5	P	
1	to	5 mA		2	Q	
2	to	10 mA		1	R	
4	to	20 mA		0.5	S	

SUPPLY VOLTAGE

| From | 20 to 28 VAC |
| :--- | ---: | ---: |
| From | 99 to 140 VAC |
| From | 198 to 264 VAC |
| From | 342 to 484 VAC |

HOUSING
Rail mounting VOX 55 mm

> 1000
> 5000
5
6

\qquad
B230
B400
B460

FA5C

FA5C

COUPLINGS FOR MEASURING ACTIVE POWER

3 PHASE, 3 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE SYMMETRICAL LOAD

3 PHASE, 3 WIRE ASYMMETRICAL LOAD

3 PHASE, 3 or 4 WIRE ASYMMETRICAL LOAD

COUPLINGS FOR MEASURING REACTIVE POWER

3 PHASE, 3 or 4 WIRE SYMMETRICAL LOAD

3 PHASE, 4 WIRE ASYMMETRICAL LOAD

Rail mounting, 35/45/55 mm

Quick mounting on DIN rail according to DIN 46277/3 (European Norm EN 50022).

Connection terminals shielded to prevent human contact, max. cable $4 \mathrm{~mm}^{2}$, protection class IP 20.

Designation and arrangement according to DIN 46199.

11-pin socket mounting, 35/45/55 mm

Mounting and connection by 11-pin socket with either screw terminals or soldering connections.

Fixation by Retaining Clip BU 351 for 35/45/55 mm
Plug connection according to IEC 67-1-18a.

Dimensions:

$\longleftarrow 35 \mathrm{~mm} \longrightarrow \longleftarrow 45 \mathrm{~mm} \longrightarrow \longleftarrow 55 \mathrm{~mm} \longrightarrow$

Classification:
VDE 0435
VDE 0110
EN60255
Self - quenching plastic case, protection class IP 40.

Mounting plate MP 225.
(only 35 mm . housing)

Socket ZKR 118 (11-pin)

Holding device BU 351

