

Code	Project	Release	
ST02	A47-A	D	TECHNICAL DATASHEET

ABSOLUTE MAGNETIC SENSOR AGM

GENERAL FEATURES

- Linear magnetic sensor, with direct reading of the absolute position.
- Resolutions up to 1 µm.
- Measuring length up to 30 000 mm.
- · High-speed serial interface.
- · Contactless reading.
- Warning indication through LED.
- Extremely easy and fast mounting of the entire measuring system, with wide alignment tolerances.
- Small size, to allow installation in narrow spaces.
- · Option: 1 Vpp analog signal.
- · Axial or radial cable output.

MECHANICAL AND ELECTRICAL CHARACTERISTICS

MECHANICAL

- Magnetic sensor with die-cast body.
- Possibility to fix the magnetic sensor with M4 screws or with through M3 screws.
- · Wide alignment tolerances
- · Robust sealed cable exit.

ELECTRICAL

- 14 Bit reading device, for absolute code
- Option: 1 Vpp A and B output signals, with phase displacement of 90° (electrical).
- Serial protocol SSI BiSS.
- Reading through positioning sensor based on magneto resistance, with AMR effect (Magnetic Anisotropy).
- Electrical protection against inversion of power supply polarity and short circuits on output ports.
- CABLE:
 - Shielded twisted pair for digital signals (SSI BiSS).
 - The cable is suitable for continuous movements.

SERIAL OUTPUT VERSION

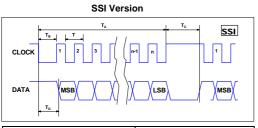
- 6-wire shielded cable \varnothing = 7 mm, PVC external sheath, with low friction coefficient, oil resistant.
- Conductors section: power supply 0.25 $\mbox{mm}^2;$ signals 0.25 $\mbox{mm}^2.$
- The cable's bending radius should not be lower than 35 mm.

ANALOG + SERIAL OUTPUT VERSION

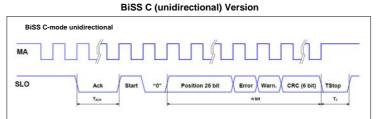
- 10-wire shielded cable Ø = 7.1 mm, PUR external sheath.
- Conductors section: power supply 0.35 $\mathrm{mm}^2;$ signals 0.10 $\mathrm{mm}^2.$
- The cable's bending radius should not be lower than 45 mm.

SIGNALS	CONDUCTOR COLOR			
V+	Brown			
V-	White			
CK	Green			
СK	Yellow			
D	Pink			
D	Grey			
SCH	Shield			

M
2+2 mm
sine wave 1 Vpp (optional)
up to 1 µm *
± 1 increment
2 mm
SSI – BiSS
500 - 100 - 50 - 10 - 5 - 1 μm
± 15 μm
up to 30 000 mm
300 m/min
200 m/s ² [55 ÷ 2 000 Hz]
IP 67
0 °C ÷ 50° C
-20 °C ÷ 70° C
100%
5 ÷ 28 Vdc
150 mA _{MAX} (with R = 120 Ω)
25 m **
see related table
inversion of polarity and short circuits
80 g

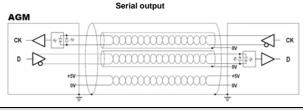

^{*} Depending on CNC division factor.

^{**} Ensuring a minimum power supply of 5 V to the sensor, the maximum cable length can be extended to 100 m.



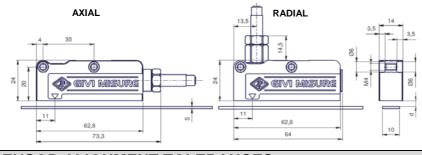
Code	Project	Release	
ST02	A47-A	D	TECHNICAL DATASHEET

OUTPUT SIGNALS



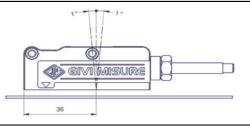
Interface	SSI Binary – Gray
Signals level	EIA RS 485
Clock frequency	0.1 ÷ 1.2 MHz
n	Position bit
T _C	12 ÷ 65 µs

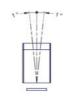
Interface	BiSS C unidirectional		
Signals level	EIA RS 485		
Clock frequency	0.1 ÷ 4 MHz		
n	26 + 2 + 6 bit		
T _C	12 ÷ 20 μs		

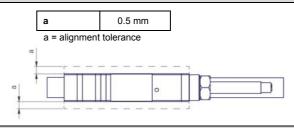

CABLE

In case of cable extension, it is necessary to guarantee:

- the electrical connection between the body of the connectors and the cables shield;
- a minimum power supply voltage of 5 V to the sensor.


SENSOR DIMENSIONS




values in mm	MP200A	MP200A + CV103	MP200A + SP202	
s	1.3	1.6	2.1	
d	0.3 ÷ 1	0.7 _{MAX}	0.2 _{MAX}	

- s = thickness
- d = distance to be maintained between sensor and surface of the magnetic band (or eventual cover/support)

SENSOR ALIGNMENT TOLERANCES

ORDERING CODE POLE

MODEL

		PITCH	REGOLOTION	OUTPUT	SUPPLY		SIGNAL	CABLE TYPE	001111201011
	AGM	M	1	Α	528V	S0	V	M03 / S	sc
-		M = 2+2 mm	500 = 500 um	Δ = avial	528V= 5 ± 28 \/	S0 = SSI programmable	V = + 1 \/nn	Mnn = length in m	SC = without

OUTPUT SIGNALS

100 = 100 μm 50 = 50 μm 10 = 10 μm

RESOLUTION

CABLE

POWER

\$0 = SSI programmable \$1 = SSI binary \$2 = SSI binary+even parity \$3 = SSI binary+odd parity

\$4 = SSI binary+error \$5 = SSI binary+even parity+error \$6 = SSI binary+odd parity+error S7 = SSI Gray B1 = BiSS binary

signal

INCREMENTAL

M02 = 2 m (standard) 100 = 100 m = 6 wires

(only serial) = 10 wires (serial + analog)

CABLE LENGTH,

= progressive

CONNECTOR

ABSOLUTE MAGNETIC SENSOR AGM M1A 528V S0 V M03/S SC